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Abstract

The asymptotic curve is widely used in astronomy, mechanics and numerical optimiza-

tion. Moreover, it shows great application potentials in architecture. We focus on the prob-

lem how to cover bounded asymptotic curves by a freeform surface. The paper presents the

necessary and sufficient conditions for quadrilateral with non-inflection being asymptotic

boundary curves of a surface. And then, with given corner data, we model quintic Bézier

asymptotic quadrilateral interpolated by a smooth Bézier surface of bi-eleven degree. We

handle the available degrees of freedom during the construction to get an optimized result.

Some representative surfaces bounded by asymptotic curves with lines or inflections are

also discussed by examples. The presented interpolation scheme for the construction of

tensor-product Bézier surfaces is compatible with the CAD systems.

Mathematics subject classification: 65D07.
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1. Introduction

The curve’s asymptotic direction is a direction along which the normal curvature is zero. If

the tangent vector e at each point of the curve r on a surface R(u, v) is an asymptotic direction

of the surface R(u, v), then the curve is an asymptotic curve of the surface. Asymptotes have

been applied in many areas, such as astronomy [1], mechanics [2], numerical optimization [3],

architecture [4] and relevant subjects.

Architectural geometry [5] addresses challenges in the realization of complex freeform struc-

tures and technical advantages of ruled surfaces. A typical example is hyperbolic paraboloids

with negative Gaussian curvatures. Moreover, asymptotic curves can only exist on this kind of

negatively curved surface and there are two asymptotic directions at each point of the anticlas-

tic surface-regions. Based on the analysis of these asymptotic curves, this locally saddle-shaped

regions can be approximated by ruled surface. Flöry and Pottmann [4] just used asymptotic

directions, which were estimated from the given point cloud, to deduce the layout of production

sized panels and construct an initial ruled surface by aligning rulings with asymptotic curves.

However, except analyzing the asymptotic curves or interpolating some points as the asymp-

totic boundary by large ruled surface patches or multiple strips of ruled surfaces, if there exists

other general surfaces in practical application?
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In fact, since asymptotic curves are the only type to combine the benefits of straight unrolling

and orthogonal nodes along a double-curved grid, they show great application potentials in

architectural design. A remarkable realization of this structure is provided by ‘Asymptotic

Gridshell’, which was developed by Eike Schling and Denis Hitrec at TU Munich (see Fig. 1.1 or

website https://www.lt.ar.tum.de/en/research-pavilion/ in detail). They designed developable

curved support structures along asymptotic parameter lines and orientated normal to minimal

surface [6]. Recent work in [7] generalizes above structure to discretization of asymptotic nets

with constant ratio of principle curvatures. The definition of discrete asymptotic net comes

from discrete A-net in discrete differential geometry [8]. Also based on this asymptotic gridshell

structure, [9] uses a special network to discretize a surface of constant mean curvatures, which

shows that when the network becomes an asymptotic one, the surface is a minimal surface.

In above freeform structure, beams are asymptotic curves lying on the underlying surface and

together with the developable lamelles show good aesthetic qualities. The coverage of a freeform

surface is also a main problem in architectural geometry. If we fill in the gridshell by the

underlying surface patches, then each patch of the grid is bounded by asymptotic curves of

itself. This locally inverse reconstruction problem motives our interest. Then it comes to a

basic geometric problem that how to construct a surface possessing the given curves as its

asymptotic boundary curves.

Fig. 1.1. ‘Asymptotic Gridshell’ forms the INSIDE\OUT pavilion. (Picture: Hui Wang)

The study on reconstruction of smooth surfaces from a given boundary curve is a hot topic.

Many researchers studied on the construction of surfaces interpolating the special curves, but

most of which are geodesics and lines of curvature. Wang et al. [10] constructed parametric

surfaces which possess a given spatial curve as a geodesic, and Li et al. constrained a line of

curvature as the boundary curve of the surfaces [11]. Kasap et al. [12] and Li et al. [13] extended

the parametric surfaces into a generalization of surface family interpolating a geodesic curve

and a line of curvature, respectively. Li et al. also designed developable surfaces through Bézier

geodesics [14] and a given line of curvature [15]. The number of given curves of these constructed

surfaces are at most two. However, Farouki et al. gave the sufficient and necessary conditions of

closed geodesic curves [16] and lines of curvature [17] as boundary curves of Coons quadrilateral

patches. Based on the conditions in [16], he constructed triangular Coons patches [18] with

geodesic boundary curves and four-sided Bézier patches [19] with Bézier curves as geodesic
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boundaries. In order to overcome the high degree of the constructed surfaces in [19], Yang and

Wang constructed a tensor-product Bézier surface [20] and B-spline surface [21] of lower degrees

through Bézier and B-spline geodesic quadrilateral, respectively.

Constructing a surface from given asymptotic curves has not been widely studied. Inspired

by the applications in architectural design, Bayram et al. [22] extended the method in [10] to

construct a parametric surface pencil with an asymptote, Atalay et al. [23] identified a surfaces

family with Cartan frame to interpolate an asymptote and so on. These interpolations are

relevant to no more than two asymptotic curves and most surfaces are ruled surfaces.

From the mathematical perspective, we follow up on recent work [24, 25] about B-spline

and rational Bézier surface interpolating the closed asymptotic boundaries and are interested

in the generalization to Bézier surface. Motivated by the potential application in architec-

ture [4, 6, 7, 9], we analyze the local property for one patch of surface bounded by asymptotic

boundaries. We optimize the quadrilaterals and smooth the interpolated surfaces by minimizing

the strain energy and thin plate spline energy. In order to be compatible with the requirements

of the commercial CAD systems, we design the tensor product Bézier surface through Bézier

asymptotic quadrilateral.

The paper is arranged as follows. Section 2 recalls some basic facts from differential ge-

ometry and identifies the condition for a non-linear regular curve to be an asymptote on the

surface. Section 3 proposes the identification of four curves free of inflections being asymptotic

boundaries of a surface, based on which we construct an optimized Bézier asymptotic quadri-

lateral by minimizing the strain energy with given corner data of a quintic quadrilateral. Then

Section 4 satisfies the global boundary constraints to interpolate this asymptotic quadrilateral

and constructs a smooth tensor-product Bézier surface of bi-eleven degree by minimizing the

thin plate spline energy. Surfaces interpolating boundary quadrilateral including lines and in-

flections are also discussed by some examples together with degree explanation of constructed

structure in Section 5. At last, Section 6 concludes the whole paper and poses further work.

2. Preliminaries

A curve is regular if it admits a tangent line at each point of it. In the following discussions

all curves are assumed to be regular. In this paper, ṙ(s) and r′(t) denote the derivatives of r

with respect to arc-length parameter s and arbitrary parameter t, respectively. Let us briefly

review some basic facts about Frenet and Darboux frames from differential geometry ([26]).

For a point r(s) of a space curve satisfying r̈(s) 6= 0, we denote its Serret-Frenet frame is

(e(s),n(s),b(s)), where e(s),n(s) and b(s) are respectively called the unit tangent, principal

normal and binormal vector of the curve at the point r(s). Darboux frame (e(s),h(s),N(s))

is attached to space curve r(s) = R(u(s), v(s)) on surface R(u, v), where e(s) is still the unit

tangent vector of the curve, N(s) = Ru(u,v)×Rv(u,v)
||Ru(u,v)×Rv(u,v)|| is the unit normal vector of the surface,

and h(s) = N(s)× e(s) at the point R(u(s), v(s)) = r(s).

Given the general parametric curve r: t→ r(t), we have the similar definition of its Serret-

Frenet and Darboux frame as defined above with arc-length parameterization.

Lemma 2.1 ([26]). A curve on the surface is an asymptotic curve if and only if it is a line

or its osculating plane is its tangent plane.

Apart from the condition that r is a line, if r on the surface R(u, v) is an asymptotic

curve, the curve’s normal curvature kn is identically zero. Since the curvature k, the normal
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curvature kn and the geodesic curvature kg satisfy k2 = k2g + k2n, then k = σkg, σ = ±1.

From the Serret-Frenet and Darboux frames relations, we get h = σn and N = σb for both

arc-length parameter and general parameter. Therefore, the Frenet and Darboux frames agree

modulo signs for both kinds of parameters. Consequently, we have the following conditions

which identify an asymptotic curve on a surface for a general parameter.

Lemma 2.2. A non-linear regular curve r(t) without inflections is an asymptotic on the surface

R(u, v) if and only if it satisfies the following conditions and all these conditions are equivalent

to one another

• the normal curvature of r(t) is identical zero;

• the binormal at each non-inflection point of r(t) is orthogonal to the surface tangent plane

at the point R(u(t), v(t)) = r(t);

• the rectifying plane at each non-inflection point of r(t) is orthogonal to the surface tangent

plane at the point R(u(t), v(t)) = r(t).

Remark 2.1. Above analysis need the existence of binormal vector of regular curve, which

means r′′(t) 6= 0. When r′′(t0) = 0 for some parameter t0, r(t0) is an inflection of the curve

r(t) such that the curvature k(t0) = 0, in which case there is no solution to the interpolation at

such point. Therefore, the following construction builds on the analysis of non-inflection points

of the boundary curves, and the curves are assumed to be non-linear. The case that boundary

curves may be linear or have inflections will be discussed by examples in Section 5.1 and 5.2.

The goal of our paper is to construct a surface interpolating a quadrilateral, which is built

from the given data, as its asymptotic boundaries. Such boundary quadrilateral is called asymp-

totic quadrilateral. In order to realize this goal, we need to analyze the local corner conditions

and global boundary compatibility for the boundary to be asymptotic curves of the supposed

interpolating surface. There are two steps to achieve our goal. Firstly, we need to give the

conditions of being asymptotic quadrilateral and apply it to construct boundary quadrilateral

being the crossing asymptotes under the local corner conditions on a surface (in Section 3). Sec-

ondly, a surface is modeled to interpolate this quadrilateral under global boundary compatible

condition (in Section 4).

3. Quintic Bézier Asymptotic Quadrilateral

In this section, we aim to construct the quadrilateral satisfying the constraints of the crossing

asymptotes on a surface. At first, we analyze the conditions of two asymptotic curves crossing

on the same surface and generalize it to the constraints for asymptotic quadrilateral. More

precisely, we construct quintic Bézier asymptotic quadrilateral and optimize it by minimizing

the strain energy.

3.1. Conditions of asymptotic curves crossing on the same surface

Lemma 3.1. Consider an arc-length parametric regular curve r(s) on a surface R(u, v), setting

N(s) = σb(s) with σ = ±1, we have h(s) = σn(s), kn(s) = 0, k(s) = σkg(s), τg(s) = −τ(s),

where τg(s) and τ(s) are the geodesic torsion and torsion.
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Proof. N(s) = σb(s) directly leads to h(s) = σn(s), which means that the Frenet and Dar-

boux frames agree modulo signs. From the Serret-Frenet frame relation, we have the following

equations:  ė(s)

ḣ(s)

Ṅ(s)

 =

 ė(s)

σṅ(s)

σḃ(s)

 =

1 0 0

0 σ 0

0 0 σ

 0 k(s) 0

−k(s) 0 τ(s)

0 −τ(s) 0

e(s)

n(s)

b(s)


=

 0 k(s) 0

−σk(s) 0 στ(s)

0 −στ(s) 0

e(s)

n(s)

b(s)


=

 0 k(s) 0

−σk(s) 0 στ(s)

0 −στ(s) 0

1 0 0

0 σ 0

0 0 σ

 e(s)

h(s)

N(s)


=

 0 σk(s) 0

−σk(s) 0 τ(s)

0 −τ(s) 0

 e(s)

h(s)

N(s)

 .

Compared with the Darboux frame relation, we get kn(s) = 0, k(s) = σkg(s), τg(s) = −τ(s).

This completes the proof of the lemma. �

Proposition 3.1. If two different arc-length parametric asymptotic curves r1(s) and r2(s)

on the same surface R(u, v) crossing at a non-inflection point P = r1(s1) = r2(s2) satisfy

NP = σ1b1(s1) = σ2b2(s2) with σ1, σ2 = ±1, then

τ1(s1) = −τ2(s2),

where NP is the surface normal, b1(s1), τ1(s1) and b2(s2), τ2(s2) are respectively the binormal

vectors and torsions of r1(s1) and r2(s2) at the point P.

Proof. For two different asymptotic curves r1(s) and r2(s) on the same surface R(u, v), their

normal curvatures are kn1(s) = 0, kn2(s) = 0, then N1(s) = σ1b1(s), N2(s) = σ2b2(s), respec-

tively. From Lemma 3.1, we have τg1(s) = −τ1(s) and τg2(s) = −τ2(s), where τg1(s), τg2(s) are

the geodesic torsion of r1(s) and r2(s).

For two directions in the surface tangent plane Πp specified by the angles α1, and α2, since

the normal curvature kn1, kn2 and the geodesic torsion τg1, τg2 satisfy sin(α2 − α1)[τg1(α1) +

τg2(α2)] = cos(α2 − α1)[kn1(α1) − kn2(α2)] (see, e.g., [10]), we have sin(α2 − α1)[τg1(α1) +

τg2(α2)] = 0. Since α = α2 − α1 representing the oriented angle between the two curves r1(s)

and r2(s) at P is nonvanishing, we have sin(α2 − α1) 6= 0 which induces τ1(s1) = −τ2(s2). �

Remark 3.1. Above analysis is based on the arc-length parameter of functions. For the general

parameter of functions, we can have the same results. So we will discuss the general parametric

curve next, and the parameters will be omitted when no confusion can rise.

Proposition 3.1 gives us the necessary condition of two curves which are crossing at one

point being asymptotes. If we generalize the condition to quadrilateral formed by four curves,

we can find that there are three constraints for quadrilateral being asymptotic to a surface.

(The position relation of the four curves refers to Fig. 3.1).
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Proposition 3.2. Four curves ri(t) (i = 1, · · · , 4) free of inflections are boundary asymptotes

of a surface R(u, v), then these four curves satisfy the following three constraints:

(C1) rectifying constraints at corners: the binormal vectors bi(t) of the four curves ri(t) at

four corners must agree modulo sign, that is

N12 = σ1(0)b1(0) = σ2(0)b2(0), N14 = σ1(1)b1(1) = σ4(0)b4(0),

N23 = σ2(1)b2(1) = σ3(0)b3(0), N34 = σ3(1)b3(1) = σ4(1)b4(1),
(3.1)

where N12, N14, N23, N34 are unit normal vectors of the surface at four corners, and σi(j) =

±1 (i = 1, · · · , 4, j = 0, 1).

(C2) asymptotic crossing constraints at corners:

τ1(0) = −τ2(0), τ1(1) = −τ4(0), τ2(1) = −τ3(0), τ3(1) = −τ4(1). (3.2)

(C3) normal orientation constraints along boundaries: normal vectors along boundaries

Ni(t) are continuous and satisfy Ni(t) = ±bi(t) (i = 1, · · · , 4).

Fig. 3.1. Quadrilateral with vectors at four corners.

Boundaries being asymptotic to a surface is only related with boundary constraints. Above

three constraints are necessary. Conversely, if any of these three conditions is not satisfied,

there will be no such surface interpolating the asymptotic quadrilateral. Therefore, these three

constraints are the necessary and sufficient constraints to exist an interpolating surface.

From (3.1) and (3.2), it is easy to know that conditions (C1) and (C2) are local corner

constraints. And condition (C3) is a global boundary condition compatible with the surface. In

order to construct a surface whose boundary quadrilateral is asymptotic, (C1) and (C2) can help

us construct the asymptotic quadrilateral firstly, then (C3) helps to construct an interpolating

surface.

3.2. Constraints for quintic Bézier asymptotic quadrilateral

We hope to construct an optimized Bézier asymptotic quadrilateral by choosing some free

parameters. A real world requirement of given corner positions, tangents and curvatures can

be satisfied with the degree of curves being at least 5. Therefore, the following focuses on the
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construction of quintic asymptotic quadrilateral. We assume that the four boundary curves free

of inflections are quintic Bézier curves

ri(u) =

5∑
j=0

PijB
5
j (u), (i = 1, 3) , ri(v) =

5∑
j=0

PijB
5
j (v), (i = 2, 4),

with the given corner data including the corner vectors (as shown in Fig. 3.1)

r1(0) = P10 = P20 = r2(0), r1(1) = P15 = P40 = r4(0),

r2(1) = P25 = P30 = r3(0), r3(1) = P35 = P45 = r4(1),

P11, P14, P21, P24, P31, P34, P41, P44,

and curvatures ki(j) (i = 1, · · · , 4, j = 0, 1). Then the eight points P12, P13, P22, P23, P32,

P33, P42, P43 are unknown and need to be determined.

Remark 3.2. Above given corner data for the quintic Bézier curves are prerequisites and

arbitrary. From the following solution, we find that there are four free parameters left. Then

we can get optimized result by choosing those parameters properly. Moreover, the quintic Bézier

quadrilateral can be replaced by curves of higher degrees for more than four free parameters

left, and the method is working, too.

Given four Bézier curves free of inflections, we hope to construct a Bézier patch that inter-

polates these curves as asymptotic boundaries. The Proposition 3.2 offers three constraints and

gives the identification of asymptotic quadrilateral. The following solves the unknown control

points of the quintic Bézier quadrilateral under these three constraints.

(a) Rectifying constraints at corners.

Consider the rectifying constraints (3.1) and take the corner point P10 for example. Since

the unit normal vector N12 =
r′1(0)×r

′
2(0)

||r′1(0)×r′2(0)||
of the surface is parallel to unit binormal vectors

b1(0) =
r′1(0)×r

′′
1 (0)

||r′1(0)×r′′1 (0)||
and b2(0) =

r′2(0)×r
′′
2 (0)

||r′2(0)×r′′2 (0)||
, then both r′′1(0) and r′′2(0) are located in the

tangent plane Π12 of the surface at the point P10. Namely, points P10, P11, P12, P21, P22 are

in the same plane such that P12 and P22 can be written as

P12 = P10 + λ12(P11 −P10) + µ12(P21 −P20),

P22 = P20 + λ22(P11 −P10) + µ22(P21 −P20),

where λ12, µ12, λ22, µ22 are real. For the other three corner points, we can assume the similar

representation:

P32 = P30 + λ32(P24 −P25) + µ32(P31 −P30),

P23 = P25 + λ23(P24 −P25) + µ23(P31 −P30),

P13 = P15 + λ13(P41 −P40) + µ13(P14 −P15),

P42 = P40 + λ42(P41 −P40) + µ42(P14 −P15),

P33 = P35 + λ33(P34 −P35) + µ33(P44 −P45),

P43 = P45 + λ43(P34 −P35) + µ43(P44 −P45),

where λ32, µ32, λ23, µ23, λ13, µ13, λ42, µ42, λ33, µ33, λ43, µ43 are real.
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Using the curvature expression, we have

k1(0) =
4||(P11 −P10)× (P12 −P10)||

5||P11 −P10||3
,

which is an equation only about µ12, so that we can get the value of µ12. From the other seven

curvature equations at the corners, we can deduce the values of λ13, λ22, µ23, λ32, µ33, λ43, µ42

in the same way.

(b) Asymptotic crossing constraints at corners.

The torsions at the four corners should satisfy the constraints (3.2). Due to the torsion

expression, we have

det(P11 −P10,P12 −P10,P13 −P10)

||(P11 −P10)× (P12 −P10)||2
= −det(P21 −P20,P22 −P20,P23 −P20)

||(P21 −P20)× (P22 −P20)||2
,

det(P15 −P14,P13 −P15,P15 −P12)

||(P15 −P14)× (P13 −P15)||2
= −det(P41 −P40,P42 −P40,P43 −P40)

||(P41 −P40)× (P42 −P40)||2
,

det(P25 −P24,P23 −P25,P25 −P22)

||(P25 −P24)× (P23 −P25)||2
= −det(P31 −P30,P32 −P30,P33 −P30)

||(P31 −P30)× (P32 −P30)||2
,

det(P35 −P34,P33 −P35,P35 −P32)

||(P35 −P34)× (P33 −P35)||2
= −det(P45 −P44,P43 −P45,P45 −P42)

||(P45 −P44)× (P43 −P45)||2
,

each of which is respectively with respect to two parameters (λ23, µ13), (λ33, µ22), (λ12, µ43)

and (λ42, µ32). Solving these equations, we can get µ13, µ22, µ43, µ32, which are expressed by

λ23, λ33, λ12, λ42, respectively.

(c) Normal orientation constraints along boundaries.

Along the regular curves ri, the unit normal Ni of the surface and binormal bi(t) (i =

1, · · · , 4) are parallel and continuous, then the number of reversals at four corners is even. That

is ∏
i,j

σi(j) = 1, (i = 1, · · · , 4, j = 0, 1). (3.3)

The signs of σi(j) (i = 1, · · · , 4, j = 0, 1) are chosen based on the equations in (3.1), which is

compatible with constraint (3.3).

Remark 3.3. (3.3) is just a necessary condition of condition (C3) and it’s still a local corner

condition. Since condition (C3) is a global boundary condition and closely related with the

surface construction which will be discussed in the next section, (3.3) can be used to construct

the asymptotic quadrilateral.

Until now, the problem of solving the eight unknown points has been transferred into acquir-

ing the values of four parameters λ23, λ33, λ12, λ42. Since these parameters are freely chosen,

we can get a family of asymptotic quadrilaterals satisfying above constraints. By minimizing

the strain energy ∫ 1

0

(||r′′1(u)||2 + ||r′′3(u)||2)du+

∫ 1

0

(||r′′2(v)||2 + ||r′′4(v)||2)dv, (3.4)

the value of λ23, λ33, λ12, λ42 are obtained so that the eight unknown points P12, P13, P22,

P23, P32, P33, P42, P43 are determined. Fig. 4.1-(a),(d) show two optimized asymptotic

quadrilateral and their control polygon.
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Remark 3.4. The strain energy is just a choice for us to find a smoother boundary quadrilat-

eral. If the users are not satisfied with this choice or want to add other restraints from practical

application, they can replace it with other optimization model.

4. Bézier Asymptotic Quadrilateral Interpolation

In the last section, we have constructed the boundary asymptotic quadrilateral satisfying

the local corner constraints. Thus, if we combine this quadrilateral with global boundary

condition, then we can construct a surface interpolating above asymptotic quadrilateral. The

Proposition 3.2 identifies four curves ri(t) free of inflections being boundary asymptotes of

a surface R(u, v). (C3) restricts normal vectors Ni(t) are continuous and parallel with the

binormal vectors bi(t) (i = 1, · · · , 4). Thus, the tangent plane Πi(t) along the boundary curves

ri(t) of the interpolated surface R(u, v) is determined by the surface normal vectors Ni(t), that

is Πi(t) = [ri(t), r
′
i(t), r

′
i(t)× r′′i (t)× r′i(t)].

The transverse tangent vectors Ti(t) (i = 1, · · · , 4) are defined along the boundary curves of

the interpolated surface R(u, v) and used to represent constraint (C3) to produce the surface.

They are defined as

T1(u) = Rv(u, 0), T3(u) = Rv(u, 1), T2(v) = Ru(0, v), T4(v) = Ru(1, v).

Since they should lie in the tangent plane Πi(t) and be coplanar with r′i(t) and [r′i(t)× r′′i (t)]×
r′i(t), they can be expressed by them with scalar functions xi(t) and yi(t) (i = 1, · · · , 4). Namely,

Ti(t) = xi(t)r
′
i(t) + yi(t)[r

′
i(t)× r′′i (t)]× r′i(t), t ∈ [0, 1]. (4.1)

For quintic Bézier curve ri(t), the degrees of r′i(t) and [r′i(t) × r′′i (t)] × r′i(t) are quartic and

ten. In order to construct an interpolated surface with lower degree, we can choose xi(t) =∑7
j=0 αijB

7
j (t), yi(t) =

∑1
j=0 βijB

1
j (t), where the coefficients αij and βij are real and they will

be identified in the following.

4.1. Identification of transverse tangent vectors

Ti(t) must satisfy the following conditions:

• Interpolation of the tangent vectors,

T1(0) = r′2(0), T1(1) = r′4(0),

T2(0) = r′1(0), T2(1) = r′3(0),

T3(0) = r′2(1), T3(1) = r′4(1),

T4(0) = r′1(1), T4(1) = r′3(1).

Take the corner P10 for example. T1(0) = r′2(0) is equivalent to

α10(P11 −P10) + 20β10[(P11 −P10)× (P12 −P10)]× (P11 −P10) = P21 −P20.

Then α10 and β10 can be represented as

α10 =
(P11 −P10) · (P21 −P20)

||P11 −P10||2
,

β10 =
det((P11 −P10)× (P12 −P10), (P11 −P10), (P21 −P20))

20||(P11 −P10)× (P12 −P10)× (P11 −P10)||2
.

The first and last coefficients of xi(t) and yi(t) (i = 1, · · · , 4) can be solved in this way.
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• Compatibility of the twist vectors,

T′1(0) = T′2(0) = Ru,v(0, 0),

T′2(1) = T′3(0) = Ru,v(0, 1),

T′1(1) = T′4(0) = Ru,v(1, 0),

T′3(1) = T′4(1) = Ru,v(1, 1).

(4.2)

Each equation in (4.2) admits two pairs of equations from corresponding coordinates.

Thus we can get αi1 and αi6 (i = 1, · · · , 4).

Moreover, let A12 be the angle between r′1(0) and r′2(0) at the corner P10, and project

T′1(0) and T′2(0) on N12 to get

T′1(0) ·N12 = τ1(0) ||r′1(0)|| ||r′2(0)|| sinA12

T′2(0) ·N12 = −τ2(0) ||r′1(0)|| ||r′2(0)|| sinA12,

which satisfy τ1(0) = −τ2(0). Other relations in constraint (C2) hold naturally at the

other corners in the same deduction.

Without loss of generality, we can set the residual αij = 0 (i = 1, · · · , 4, j = 2, · · · , 5) such

that Ti(t) (i = 1, · · · , 4) can be obtained.

4.2. Bézier surface construction

Ti(t) (i = 1, · · · , 4) are critical to construct the interpolating surface under the global

boundary compatible condition. In order to construct a Bézier surface interpolating the four

boundary Bézier curves, it’s necessary to express Ti(t) in Bézier form.

Because the degree of Ti(t) is eleven, then

Ti(t) =

11∑
k=0

(Ei
k + Fi

k)B11
k (t), i = 1, · · · , 4, (4.3)

where

Ei
k = 5

min(7,k)∑
j=max(0,k−4)

(
7

j

)(
4

k − j

)
(

11

k

) αij ·∆Pi,k−j , Fi
k =

kβi1
11

Gi
k−1 + (1− k

11
)βi0G

i
k,

Gi
k = 5

min(6,k)∑
j=max(0,k−4)

(
6

j

)(
4

k − j

)
(

10

k

) Hi
j ·∆Pi,k−j , Hi

j =
7

7− j
(Li

j −
j

7
Li
j−1),

Li
k = 100

min(4,k)∑
j=max(0,k−3)

(
4

j

)(
3

k − j

)
(

7

k

) ∆Pi,j ×∆2Pi,k−j , ∆Pi,j = Pi,j+1 −Pi,j ,

∆2Pi,j = ∆Pi,j+1 −∆Pi,j .

Thus the degree of the tensor-product Bézier surface R(u, v) is bi-eleven, that is

R(u, v) =

11∑
i=0

11∑
j=0

Qi,jB
11
i (u)B11

j (v), (4.4)
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where Qi,j (i = 0, · · · , 11, j = 0, · · · , 11) are control points of the surface.

The outermost control points Q0,i, Qi,0, Q11,i, Qi,11 (i = 0, · · · , 11,) can be determined by

the control points of boundary quadrilateral. Elevating the boundary quintic Bézier curve to

the degree of eleven as

ri(t) =

11∑
j=0

Mi
jB

11
j (t),

where Mi
j are acquired by the degree elevation formula of Bézier curve ([27]). Then

Q0,i = M1
i , Qi,0 = M2

i , Q11,i = M3
i , Qi,11 = M4

i , i = 0, · · · , 11.

From (4.3) and (4.4), we can get (i = 1, · · · , 10)

Q1,i = M1
i + 1

11 (E1
i + F1

i ), Q10,i = M3
i − 1

11 (E3
i + F3

i ),

Qi,1 = M2
i + 1

11 (E2
i + F2

i ), Qi,10 = M4
i − 1

11 (E4
i + F4

i ).

Thus the outermost control points and an array of control points adjacent to them have been

determined. Fig. 4.1-(b),(e) show two arrays of control points along the quadrilateral.

Note that so far, the global compatible boundary condition related with the transverse

tangent vectors Ti(t) (i = 1, · · · , 4) has been satisfied. Apart from these two arrays of control

points along the quadrilateral, the rest of control points of the surface can be freely chosen, that

means in fact there exists a family of surfaces interpolating the Bézier asymptotic quadrilateral

constructed in Section 3. In order to get the rest of control points, one choice is by minimizing

the thin plate spline energy of the surface as∫ 1

0

∫ 1

0

(||Ruu(u, v)||2 + 2||Ruv(u, v)||2 + ||Rvv(u, v)||2)dudv. (4.5)

In this way, we can acquire a fair interpolation surface. Fig. 4.1-(c),(f) show two pairs of Bézier

surfaces interpolating the Bézier asymptotic quadrilaterals in Fig. 4.1-(a),(d).

Remark 4.1. Since we have already known two arrays of control points of surface, the Mask

method [28] can be used reversely to determine the other free control points. There are four

common masks, including the quasi-harmonic mask [29], Dirichlet mask [30], harmonic mask [31]

and the bending mask [32]. Based on the data in Fig. 4.1-(b), the surface obtained by the

harmonic mask is best (as shown in Fig. 4.2-(a)). However, this mask is not suitable for the

data in Fig. 4.1-(e), since the resulting surface has self-intersecting curve (as shown in Fig.

4.2-(b)). Therefore, it’s an efficient way to get the resulting surfaces by optimizing the thin

plate spline energy.

5. Examples

Above analysis is trivial and is based on the condition that r′′i (t) never vanish. There may

exist other cases like r′′i (t) is identically equal to zero and r′′i (t) vanishes for some parameter

t = t0, which are corresponding to line and curve with inflection. This section focuses on these

two cases discussed by examples. We also argue the degree possibilities of boundary curves if

satisfying the constraints.
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(a) The boundary asymptotic

curves with their control points.

(b) Control points adjacent to the

outermost.

(c) The resulting Bézier Surface.

(d) The boundary asymptotic

curves with their control points.

(e) Control points adjacent to the

outermost.

(f) The resulting Bézier Surface.

Fig. 4.1. Bézier surface interpolating the Bézier asymptotic quadrilateral.

(a) Boundary data from

Fig. 4.1-(b).

(b) Boundary data from

Fig. 4.1-(e).

Fig. 4.2. Bézier surface obtained by the Mask method.

5.1. Boundary curves with lines

A special condition of the lamellas as shown in Fig. 1.1 are with straight strips, which

means the asymptotic curves are mapped to straight lines on these developable strips. Thus,

it’s possible that the curves are just lines. According to Lemma 2.1, a line on the surface is

also an asymptotic curve of it. Therefore we take quadrilateral with lines into consideration.

The following examples discuss the condition when lines are parts of the boundary curves. The

construction of the resulting Bézier surface is based on the method presented in Section 4.

Example 5.1. Let r1(t) be a line in the quadrilateral. The construction of the quintic Bézier

asymptotic quadrilateral is based on the analysis in Section 3.2. But some conditions should be

modified to be compatible with the construction process. For condition (C1), k1(0) = 0, k1(1) =
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0 and λ13 = 0, µ12 = 0. For condition (C3), τ2(0) = 0, τ4(0) = 0. Also the definition of the

tangent vector T1(t) is changed as

T1(t) = x1(t)r′1(t) + y1(t)r′2(t) + z1(t)r′4(1− t), t ∈ [0, 1], (5.1)

where

x1(t) =

7∑
j=0

α1jB
7
j (t), y1(t) =

7∑
j=0

β1jB
7
j (t), z1(t) =

7∑
j=0

δ1jB
7
j (t).

Its Bézier form is

T1(t) = 5

11∑
j

min(7,j)∑
i=max(0,j−4)

(
7

i

)(
4

j − i

)
(

11

j

) (α1i ·∆P1,j−i + β1i∆P2,j−i + δ1i∆P4,5+i−j).

Some values of α1j , β1j , δ1j (j = 0, . . . , 7) can be obtained, but the others are freely chosen.

Similar to the construction of surface in Section 4, we can get two Bézier surfaces interpolating

the Bézier asymptotic quadrilaterals with one line, which are shown in Fig. 5.1.

(a) One linear boundary. (b) One linear boundary.

Fig. 5.1. Bézier surface interpolating the Bézier asymptotic quadrilateral with one line.

Example 5.2. There are two geometric positions of two of boundary curves being lines, one

is intersecting at the corner and the other is opposite. We discuss them below separately.

• Two intersecting lines.

We assume r1, r2 are lines. Similar to the conditions related with r1 in Example 5.1, the

conditions related with r2 are set as k2(0) = 0, k2(1) = 0, λ22 = 0, µ23 = 0, τ3(0) =

0, τ4(0) = 0, and

T2(t) = x2(t)r′2(t) + y2(t)r′1(t) + z2(t)r′3(1− t), (5.2)

where

x2(t) =

7∑
j=0

α2jB
7
j (t), y2(t) =

7∑
j=0

β2jB
7
j (t), z2(t) =

7∑
j=0

δ2jB
7
j (t).

• Two opposite lines.
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Suppose r1, r3 are lines. Similarly, k3(0) = 0, k3(1) = 0, λ32 = 0, µ33 = 0, τ2(0) =

0, τ2(1) = 0, τ4(0) = 0, τ4(1) = 0, and

T3(t) = x3(t)r′3(t) + y3(t)r′2(1− t) + z3(t)r′4(t), (5.3)

where

x3(t) =

7∑
j=0

α3jB
7
j (t), y3(t) =

7∑
j=0

β3jB
7
j (t), z3(t) =

7∑
j=0

δ3jB
7
j (t).

Fig. 5.2 illustrates four Bézier surfaces interpolating the Bézier asymptotic quadrilaterals with

two lines.

(a) Two linearly intersecting boundaries. (b) Two linearly intersecting boundaries.

(c) Two linearly opposite boundaries. (d) Two linearly opposite boundaries.

Fig. 5.2. Bézier surface interpolating the Bézier asymptotic quadrilateral with two lines.

Example 5.3. Let ri be lines and ki(j) = 0 (i = 1, 2, 3, j = 0, 1), λ13 = 0, µ12 = 0, λ22 =

0, µ23 = 0, λ32 = 0, µ33 = 0, τ4(0) = 0, τ4(1) = 0, and Ti(t) (i = 1, 2, 3) be represented in

the form as (5.1), (5.2), (5.3). Fig. 5.3 exhibits two Bézier surfaces interpolating the Bézier

asymptotic quadrilateral with three lines.

Example 5.4. It’s a special case when four boundary curves are all linear. We can similarly

model this kind of surfaces based on above analysis as shown in Fig. 5.4. In fact, it’s not

hard to identify that the resulting surface can only be either plane or hyperbolic paraboloid

depending on whether the quadrilateral coplanar or not.

5.2. Boundary curves with inflection points

If there exists an inflection of curve r(t) at the point t0, then r′(t0) × r′′(t0) = 0, and the

left and right limits b− and b+ of the binormal vectors are of opposite sign. When each of



734 H. WANG, C.G. ZHU AND C.Y. LI

(a) Three linear boundaries. (b) Three linear boundaries.

Fig. 5.3. Bézier surface interpolating the Bézier asymptotic quadrilateral with three lines.

(a) Plane. (b) Hyperbolic paraboloid.

Fig. 5.4. Bézier surface interpolating the Bézier asymptotic quadrilateral with four lines.

the boundary curves ri(t) (i = 1, . . . , 4) has one or two inflections, then the total number of

reversals of the binormal vectors b(t) along the boundary curves is still even, which satisfies

the constraint (C3). Besides, on the premise that the constraint (C1) and (C2) are satisfied,

we can construct Bézier surface interpolating the quintic Bézier asymptotic quadrilateral with

inflections by the method presented in the following examples.

Example 5.5. We set the boundary curves ri(t) (i = 1, . . . , 4,) are orthogonal at four corner

points and each of them is a quintic Bézier curve with only one inflection point. The tangent

vector Ti(t) vanishes at the inflection point with a reversal of direction. The Bézier surface

interpolates the Bézier asymptotic quadrilateral with inflections as shown in Fig. 5.5.

(a) Each boundary curve with one infection. (b) Resulting surface

Fig. 5.5. Bézier surface interpolating the Bézier asymptotic quadrilateral with inflections.
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Example 5.6. Fig. 5.6 shows that each curve of ri(t) (i = 1, . . . , 4,) is a quintic Bézier curve

with two inflection points.

(a) Each boundary curve with two infections. (b) Resulting surface

Fig. 5.6. Bézier surface interpolating the Bézier asymptotic quadrilateral with inflections.

5.3. Degrees discussion

From what we have discussed before, we know that for the quintic Bézier boundary quadri-

lateral with given corner data, after construction under the local corner constraints, there are

still free parameters left. This provides freedom to get asymptotic quadrilateral and minimiz-

ing the strain energy can help us get a smooth one. If the degree of the boundary curves is

higher than five, then more free parameters can be freely chosen. Such condition suits for the

construction of asymptotic quadrilateral with more restraints from the practical application.

If we want to reduce the degree of the boundary curve ri, we need to consider how many

parameters are related, and the most important, how many parameters are free. For the quintic

Bézier boundary curves, there are four free parameters left. So if we relax the given corner data,

for example, the curvatures of the quadrilateral are not given in advance, then there will be 8

more free parameters. Thus, the number of control points on each boundary can be reduced to

five so that the degree of boundary curve ri is reduced to quartic. In a similarly constructed

method, at last we find that there is one free parameter (about the initial curvature such as

k1(0)) left. Choosing k1(0) can help us construct asymptotic quadrilateral as we wish. And the

strain energy is much easier: it’s a quadratic function about k1(0). As discussed before, we can

then use Bézier surface of bi-eight to interpolate this quartic asymptotic quadrilateral. In fact,

this is a special case studied in [25] when all weights to be equal.

This analysis illustrates that decreasing the given information of the corner data can help

us reduce the degree of the boundary curves. But less information will lead to the difficulty to

solve function and what’s worse it may have no solutions. So, here we just use the quintic Bézier

boundary condition with given positions, tangents and curvatures to construct asymptotic

quadrilateral. If insisted on lower degree with same boundary conditions, then cubic B-spline

asymptotic quadrilateral is a good choice which can be interpolated by B-spline surface of

bi-quintic degree (see [24]).

6. Conclusions and Future Work

Inspired by the application potentials of asymptotic curves in real architecture, we abstract

a local geometry problem how to construct a surface interpolating curves as its asymptotic
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boundary curves. We analyze the conditions to construct asymptotic quadrilateral and mod-

el Bézier surfaces interpolating quintic Bézier asymptotic quadrilateral. The construction of

the resulting tensor-product Bézier surface satisfies the global compatible constraints along

boundaries related with the transverse tangent vectors. The existing freedom to obtain both

boundary quadrilateral and interpolated surface makes the construction flexible. In addition,

the construction of surfaces interpolating asymptotic quadrilaterals with lines or inflections are

also discussed by examples.

Using this method, we can easily fill in all the quads in Fig. 1.1 with smooth surfaces

bounded by these asymptotic curves. However, how to make all the surfaces smooth globally

along the asymptotic curves is not an easy and obvious generalization. This problem concerns

patches joining and compatibility. A careful study of surfaces interpolation along a common

asymptotic curve and an asymptotic vertex star is left for future research.
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quadrilateral, Journal of Computer-Aided Design and Computer Graphics, 29:8 (2017), 1497-1504.

[26] M.P. Do Carmo, Differential Geometry of Curve and Surface, Prentice Hall, Englewood Cliffs,

1976.

[27] G. Farin, Curves and Surfaces for CAGD: A Practical Guide, 5th edition, Morgan Kaufmann,

San Francisco, 2002.

[28] G. Farin and D. Hansford, Discrete Coons patches, Computer Aided Geometric Design, 16:7

(1993), 691-700.

[29] D.L. Chopp, Computing minimal surfaces via level set curvature flow, Journal of Computational

Physics, 106 (1993), 77-91.
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