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Abstract
Asymptote is widely used in astronomy, mechanics, architecture and relevant subjects. In this paper, by analyzing
the Frenet frame and the Darboux frame of a curve on the surface, the necessary and sufficient conditions for a
quadrilateral boundary being asymptotic of a surface are derived. This quadrilateral is called asymptotic quadri-
lateral. Given corner data including positions, tangents and curvatures of a cubic B-spline quadrilateral with six
control points in each boundary, a family of asymptotic quadrilaterals are constructed after solving the identifica-
tion conditions of the control points. An optimized one is obtained by minimizing the strain energy of the boundary
curves. Then, the transverse tangent vectors along the boundaries of the B-spline surface can be obtained by the
asymptotic conditions and the resulting B-spline surface is of bi-quintic degree. Two arrays of control points of
the surface along the quadrilateral are obtained from combinations transverse tangent vectors and the boundaries
which are elevated from the cubic B-spline curves. For the given inner control points, B-spline surface of bi-quintic
degree interpolating the cubic B-spline asymptotic quadrilateral is constructed. The optimized surface is the one
with the minimized thin plate spline energy. The method is verified by some representative examples including the
boundary curves with lines and inflections. Such interpolation scheme for the construction of the tensor-product
B-spline surfaces is compatible with the CAD systems.

: Asymptotic curves, B-spline surface, Interpolation, Quadrilateral, Inflection

1. Introduction

Asymptote is one of the most important characteristic curves on surface, which is widely used in astronomy (Con-
topoulos, 1990), mechanics (Angenent and Velázquez, 1995), architecture (Flöry and Pottmann, 2010), numerical opti-
mization (Wang and Ni, 2008) and so on. Some previous studies of asymptote focused on how to compute or obtain the
asymptotic curves on the surface (Wang and Ni, 2008, Lane and MacQueen, 1986, Hartman and Winter, 1951, Kitagawa,
1988). In practice, the reverse problem that how to construct surface interpolating the given curves as asymptotic curves
deserves our research, too.

Surfaces interpolating the special curves, such as geodesics and lines of curvature, were widely studied. For instance,
Wang et al. (2004) and Li et al. (2011a) constructed parametric surfaces asking a given spatial curve to be a geodesic
and a line of curvature, respectively. Furthermore, Kasap et al. (2008) and Li et al. (2013a) separately extended the
parametric surfaces into a generalization of surface family interpolating a geodesic curve and a line of curvature. The
developable surfaces through Bézier geodesics (Li et at., 2011b) and a given line of curvature (Li et al., 2013b) were
also discussed. Notice that the resulting surfaces studied above didn’t interpolate the closed boundary curves. Whereas,
Farouki, Szafran and Biard studied intensively about this. They constructed a series of Coons surfaces bounded by given
closed geodesic curves (Farouki, 2009a, 2009b, 2010) and lines of curvature (Biard, 2010). Triangular Coons patches
(Farouki, 2010) and four-sided Bézier patches (Farouki, 2009b) with geodesic boundaries were based on the sufficient
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and necessary conditions for Coons patches interpolating geodesic boundary curves (Farouki, 2009a). Yang and Wang
(2015a, 2015b) constructed the tensor-product Bézier surface and B-spline surface of lower degrees through Bézier and
B-spline geodesic quadrilateral respectively, which avoided high degrees of the constructed surfaces in (Farouki, 2009b).

Apart from geodesics and lines of curvature, given asymptotic curves to be boundary curves is another interesting
topic. Liu and Wang (2013) generalized the result (Wang, et al., 2004) to developable surface through a given asymptote.
In architectural design, Flöry and Pottmann (2010) used asymptotic direction, which were estimated from the given
point cloud, to construct an initial ruled surface by aligning rulings with asymptotic curves. Shi et al. (2014) presented a
method for approximation of a negatively curved surface with a quad mesh guided by the asymptotic directions. However,
besides the ruled surfaces, whether there are some other general surfaces to construct freeform surfaces by analyzing
the asymptotic direction or interpolating some curves as the asymptotic boundary? Inspired by these applications in
architecture, Bayram et al. (2012, 2015, 2016) constructed a family of parametric surfaces interpolating a common
asymptote. Atalay and Kasap (2015, 2016) and Yüzbasi (2016) identified a surfaces family through an asymptotic curve
with Cartan frame, bishop frame and Frenet frame.

Up to now, all these interpolated asymptotic boundary curves studied are not closed. Generally, surface interpolating
the closed boundary curve is more interesting for surface modeling in architecture and mechanical design. Motivated by
the potential applications in architecture, architectural geometry, and mechanical design, we extend the prior studies to
the case that all four boundary curves of a rectangular patch are specified as asymptotic quadrilateral of the constructed
surface. We wonder what such surfaces would be like, and whether these surfaces can be constructed just as the surfaces
interpolating geodesic quadrilateral or lines of curvature quadrilateral. We identify constraints on boundary quadrilateral,
which constitutes the sufficient and necessary conditions for the surface interpolating the asymptotic quadrilateral. To be
compatible with the requirements of the commercial CAD systems, we design the tensor product B-spline surface through
B-spline asymptotic quadrilateral of lower degree in this paper.

The paper is arranged as follows. Section 2 recalls some notations and results in differential geometry and offers the
condition for a regular curve to be an asymptote on the surface. For given corner data, Section 3 identifies the constraints
of cubic B-spline asymptotic quadrilateral, followed by the construction of tensor-product B-spline surface interpolating
this asymptotic quadrilateral in Section 4. Examples including the boundary curves with lines demonstrate the presented
method in Section 5. Additionally, B-spline surfaces interpolating cubic B-spline asymptotic quadrilateral with inflections
are also discussed in Section 6. Finally, Section 7 concludes the paper.

2. Preliminaries

In this paper, ṙ(s) and r′(t) define the derivatives of r with respect to arc-length parameter s and arbitrary parameter
t, respectively. A curve is regular if it has a tangent line at each point of the curve. In the rest of the paper, all curves
are assumed to be regular. Next, we recall some basic facts about the Frenet and the Darboux frame from differential
geometry (Do Carmo, 1976, Chen, 2011).

The Serret-Frenet frame (e(s),n(s),b(s)) is represented by the unit tangent e(s) = ṙ(s), principal normal n(s) =
r̈(s)/||r̈(s)|| and binormal vectors b(s) = e(s) × n(s) of the space curve at the point r(s). It satisfies the relations:

ė(s)
ṅ(s)
ḃ(s)

 =


0 k(s) 0
−k(s) 0 τ(s)

0 −τ(s) 0




e(s)
n(s)
b(s)

 , (1)

where the curvature k(s) and torsion τ(s) of the curve r(s) are defined by k(s) = ||r̈(s)||, τ(s) = det(ṙ(s),r̈(s), ˙̈r(s))
||r̈(s)||2 . Above

frame requires r̈(s) , 0, otherwise, k(s) = 0 (for some parameter s) identifies an inflection of the curve.
The Darboux frame (e(s),h(s),N(s)) of a space curve r(s) = R(u(s), v(s)) on the surface R(u, v) is defined by the unit

tangent vector e(s) of the curve, the unit normal vector N(s) = Ru(u,v)×Rv(u,v)
||Ru(u,v)×Rv(u,v)||

of the surface, and h(s) = N(s) × e(s) at the
point R(u(s), v(s)) = r(s). It’s governed by the equation:

ė(s)
ḣ(s)
Ṅ(s)

 =


0 kg(s) kn(s)
−kg(s) 0 −τg(s)
−kn(s) τg(s) 0




e(s)
h(s)
N(s)

 , (2)

where the normal curvature kn(s), the geodesic curvature kg(s), and the geodesic torsion τg(s) are defined as kn(s) =
ė(s) · N(s), kg(s) = ė(s) · h(s), τg(s) = Ṅ(s) · h(s).
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For the parametric curve r: t → r(t), the Frenet frame is defined by
e′(t)
n′(t)
b′(t)

 = ||r′(t)||


0 k(t) 0
−k(t) 0 τ(t)

0 −τ(t) 0




e(t)
n(t)
b(t)

 , (3)

where e(t) = r′(t)
||r′(t)|| , b(t) = r′(t)×r′′(t)

||r′(t)×r′′(t)|| , n(t) = b(t) × e(t). The curvature k(t) and torsion τ(t) of the curve r(t) are

k(t) =
||r′(t) × r′′(t)||
||r′(t)||3 , τ(t) =

det(r′(t), r′′(t), r′′′(t))
||r′(t) × r′′(t)||2 . (4)

Meanwhile, the Darboux frame (e(t),h(t),N(t)) at r(t) = R(u(t), v(t)) on the surface R(u, v) is denoted by
e′(t)
h′(t)
N′(t)

 = ||u′Ru + v
′Rv||


0 kg(t) kn(t)
−kg(t) 0 −τg(t)
−kn(t) τg(t) 0




e(t)
h(t)
N(t)

 , (5)

where e = u′Ru+v
′Rv

||u′Ru+v′Rv ||
, h = Ru×Rv

||Ru×Rv ||
× e, N = Ru×Rv

||Ru×Rv ||
, and kn(t) = e′(t)·N(t)

||u′Ru+v′Rv ||
, kg(t) =

e′(t)·h(t)
||u′Ru+v′Rv ||

, τg(t) =
N′

(t)·h(t)
||u′Ru+v′Rv ||

.

Definition 1. (Do Carmo, 1976)The curve’s asymptotic direction is a direction along which the normal curvature is zero.
If the tangent vector e at each point of the curve r is an asymptotic direction of the surface R(u, v), then the curve is an
asymptotic curve of the surface.

Therefore, if r on the surface R(u, v) is an asymptotic curve, then the normal curvature kn of the curve is identically
zero.

Lemma 1. (Chen, 2011) A curve on the surface is an asymptotic curve if and only if it’s a line or its osculating surface is
its tangent surface.

Lemma 2. A non-linear regular curve r(t) without inflections is an asymptote on the surface R(u, v) if and only if it
satisfies the following conditions and all these conditions are equivalent to one another
• the normal curvature of r(t) is identical zero;
• the binormal at each non-inflection point of r(t) is orthogonal to the surface tangent plane at the point R(u(t), v(t)) =

r(t);
• the osculating plane at each non-inflection point of r(t) is tangent to the surface at the point R(u(t), v(t)) = r(t).

Let p be a positive integer and Γ = (ti) be a non-decreasing sequence of real numbers, where {ti} is the set of knots
and Γ is the knot vector. We denote by S p,Γ the linear space spanned by the B-spline basis functions {Ni,p,Γ(t)} of degree
p and with the knot vector Γ, which satisfy Ni,p(x) = ωi,p(x)Ni,p−1(x) + (1 − ωi+1,p(x))Ni+1,p−1(x) with

ωi,p(x) = ωi,p,Γ(x) =

 x−ti
ti+p−1−ti

, i f ti < ti+p−1,

0, otherwise,
and Ni,1(x) =

 1, i f ti ≤ x < ti+1,

0, otherwise.

Definition 2. (Mørken, 1991)Let U = (τ j) be a subsequence of Γ, then S p,U ⊆ S p,Γ. Therefore, the B-splines {N j,p,U}
of S p,U are linear combinations of the B-splines {Ni,p,Γ}, that is N j,p,U =

∑
i
α j,p,U,Γ(i)Ni,p,Γ. The coefficients {α j,p,U,Γ} are

called discrete B-splines of degree p on Γ with knots U, and they satisfy

α j,p(i) = α j,p,U,Γ(i) = ω j,p,U(ti+p)α j,p−1,U,Γ(i) + (1 − ω j+1,p,U(ti+p))α j+1,p−1,U,Γ(i),

where α j,1,U,Γ(i) = N j,1,U(ti) and ω j,p,U(t) = ω j,p(t).

3. Cubic B-spline asymptotic quadrilateral

We aim to construct a B-spline patch whose boundary quadrilateral is asymptotic. This boundary quadrilateral is
called asymptotic quadrilateral. In order to achieve this goal, we need to consider both the local corner conditions and
global boundary conditions. In fact, we can firstly construct the asymptotic quadrilateral under the local condition, then
use this quadrilateral to produce the interpolating surface under the global condition.

Before constructing cubic B-spline asymptotic quadrilateral, we analyze the conditions of two asymptotic curves
intersecting on the same surface at first.
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3.1. Conditions of asymptotic curves intersecting on the same surface
For an asymptotic curve of a surface, we have k = σkg, σ = ±1 due to k2 = k2

g + k2
n. From Eq. (1) and Eq. (2), it’s

easy to get that h = σn and N = σb for the arc-length parameter. For the general parameter, we have the same results
from Eq. (3) and Eq. (5). Therefore, the Frenet and the Darboux frames agree modulo signs for both kinds of parameters.
It’s easy to deduce the following lemma.

Lemma 3. For an arc-length parametric regular curve r(s) on a surface R(u, v), setting N(s) = σb(s) with σ = ±1, we
have h(s) = σn(s), kn(s) = 0, k(s) = σkg(s), τg(s) = −τ(s).

Proposition 1. If two arc-length parametric asymptotic curves r1(s) and r2(s) on the same surface R(u, v) intersect at an
non-inflection point P = r1(s1) = r2(s2) satisfying NP = σ1b1(s1) = σ2b2(s2) with σ1, σ2 = ±1, then τ1(s1) = −τ2(s2),
where NP is the surface normal, b1(s1), τ1(s1) and b2(s2), τ2(s2) are respectively the binormal vectors and torsion of
r1(s1) and r2(s2) at the point P.

Proof 1. From the above lemma, τg1(s) = −τ1(s) and τg2(s) = −τ2(s), where τg1(s), τg2(s) are the geodesic torsion of
r1(s) and r2(s). From (Farouki, et al. 2009a), sin(α2 − α1)[τg1(α1) + τg2(α2)] = cos(α2 − α1)[kn1(α1) − kn2(α2)], where
α1, α2 specify two directions in the surface tangent plane, then sin(α2 − α1) , 0 induces τ1(s1) = −τ2(s2).

Remark 1. Note that we can get the same results of Lemma 3 and Proposition 1 for the curves with arbitrary parameter.
Then for the following discussions, the parameters of the curve r will be omitted if no confusion arises.

If we generalize two asymptotic crossing curves to a quadrilateral, we can have the following necessary conditions
for the quadrilateral being asymptotic. In fact, if the boundary quadrilateral doesn’t satisfy these conditions, then the
boundary curves of the interpolating surface are not asymptotic.

Proposition 2. Four curves ri(t), i = 1, · · · , 4, (as shown in Fig. 1) are free of inflections as boundary asymptotes of a
surface R(u, v) if and only if these four curves satisfy the following three constraints:

Fig. 1 Quadrilateral with vectors at four corners.

(C1) rectifying constraints: the binormal vectors of the four curves at four corners satisfy the modulo sign, that is

N12 = σ1(0)b1(0) = σ2(0)b2(0), N14 = σ1(1)b1(1) = σ4(0)b4(0),
N23 = σ2(1)b2(1) = σ3(0)b3(0), N34 = σ3(1)b3(1) = σ4(1)b4(1),

(6)

where N12, N14, N23, N34 are unit normal vectors of the surface at four corners and σi( j) = ±1, i = 1, · · · , 4, j = 0, 1.
(C2) corner asymptotic crossing constraints:

τ1(0) = −τ2(0), τ1(1) = −τ4(0), τ2(1) = −τ3(0), τ3(1) = −τ4(1). (7)

(C3) boundary normal orientation constraint: boundary normal vectors Ni(t) are continuous and satisfy Ni(t) =
±bi(t), i = 1, · · · , 4.

Here, (C1) and (C2) are the local corner conditions and (C3) is the global boundary condition.
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3.2. Constraints for cubic B-spline asymptotic quadrilateral
In order to construct the cubic B-spline asymptotic quadrilateral, we need to obtain the boundary control points which

are determined by the above conditions with the given corner positions, tangent vectors and curvatures. More knots of the
boundary B-spline curve means more control points and then more free parameters left to be solved. We find that it’s a bet-
ter choice to satisfy the constraints and solve easily, if we choose the knot vector Ui = {ui0, ui1, ui2, ui3, ui4, ui5, ui6, ui7, ui8, ui9}
with ui j = 0 ( j = 0, · · · , 3), ui j = 1 ( j = 6, · · · , 9) and 0 < ui4 < ui5 < 1, which leads to six control points to be solved at
each boundary.

Suppose that the four boundary curves with free of inflections are cubic B-spline curves

ri(u) =
5∑

j=0
Pi jN j,3(u), (i = 1, 3) , ri(v) =

5∑
j=0

Pi jN j,3(v), (i = 2, 4), (8)

where Pi j are control points, and N j,3(u), N j,3(v) are B-spline bases defined over Ui. Thus corner data meet

r1(0) = P10 = P20 = r2(0), r1(1) = P15 = P40 = r4(0),
r2(1) = P25 = P30 = r3(0), r3(1) = P35 = P45 = r4(1).

(9)

Given the value of Eq. (9), points P11, P14, P21, P24, P31, P34, P41, P44 and curvatures ki( j), i = 1, · · · , 4, j = 0, 1,
the rest of control points of B-spline curves P12, P13, P22, P23, P32, P33, P42, P43 can be obtained from the following
constraints.

(a) Rectifying constraints.
From the rectifying constraints in Eq. (6), the unit normal vector N12 =

r′1(0)×r′2(0)
||r′1(0)×r′2(0)|| of the surface is parallel to the

unit binormal vectors b1(0) = r′1(0)×r′′1 (0)
||r′1(0)×r′′1 (0)|| and b2(0) = r′2(0)×r′′2 (0)

||r′2(0)×r′′2 (0)|| , then both r′′1 (0) and r′′2 (0) are located in the tangent
plane Π12 of the surface at the point P10. Therefore, points P10, P11, P12, P21, P22 are coplanar. Let ∆Pi j = Pi j+1 − Pi j,
∆kPi j = ∆

k−1Pi j+1 − ∆k−1Pi j, k = 2, 3, and i, j = 1, · · · , 4. Then P12 and P22 can be represented as

P12 = P10 + λ12(∆P10) + µ12(∆P20), P22 = P20 + λ22(∆P10) + µ22(∆P20).

Similarly, P32, P23, P13, P42, P33, P43 are represented as:

P32 = P30 + λ32(∆P24) + µ32(∆P30), P23 = P25 + λ23(∆P24) + µ23(∆P30),

P13 = P15 + λ13(∆P40) + µ13(∆P14), P42 = P40 + λ42(∆P40) + µ42(∆P14),

P33 = P35 + λ33(∆P34) + µ33(∆P44), P43 = P45 + λ43(∆P34) + µ43(∆P44),

where λi j, µi j, i = 1, · · · , 4, j = 2, 3 are real.
Due to the curvature expression in Eq. (4), we have

k1(0) =
2 u14

3 u15

||(∆P10) × (∆2P10)||
||∆P10||3

, k1(1) =
2 (1 − u15)
3 (1 − u14)

||(∆P14) × (∆2P13)||
||∆P14||3

,

and the other six curvature equations, so that λ13, µ12, λ22, µ23, λ32, µ33, λ43, µ42 can be represented by ui4, ui5 (i =
1, · · · , 4).

(b) Corner asymptotic crossing constraints.
From the torsion constraints in Eq. (7) at four corners, the torsion expression in Eq. (4) leads to

u14 ·
det(∆P10,∆

2P10,∆
3P10)

||(∆P10) × (∆2P10)||2 = −u24 ·
det(∆P20,∆

2P20,∆
3P20)

||(∆P20) × (∆2P20)||2 ,

(1 − u15) · det(∆P14,∆
2P13,∆

3P12)
||(∆P14) × (∆2P13)||2 = −u44 ·

det(∆P40,∆
2P40,∆

3P40)
||(∆P40) × (∆2P40)||2 ,

(1 − u25) · det(∆P24,∆
2P23,∆

3P22)
||(∆P24) × (∆2P23)||2 = −u34 ·

det(∆P30,∆
2P30,∆

3P30)
||(∆P30) × (∆2P30)||2 ,

(1 − u35) · det(∆P34,∆
2P33,∆

3P32)
||(∆P34) × (∆2P33)||2 = −(1 − u45) · det(∆P44,∆

2P43,∆
3P42)

||(∆P44) × (∆2P43)||2 ,
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such that µ13, µ22, µ32, µ43 can also be represented by ui4, ui5. If given ui4, ui5 (i = 1, · · · , 4), then λ12, λ23, λ33, λ42 can be
obtained by minimizing the strain energy

∫ 1

0
(||r′′1 (u)||2 + ||r′′3 (u)||2)du +

∫ 1

0
(||r′′2 (v)||2 + ||r′′4 (v)||2)dv.

Hence, the eight unknown points P12, P13, P22, P23, P32, P33, P42, P43 are determined.
(c) Boundary normal orientation constraint.
Along the regular boundary curves ri, if the unit normal Ni of the surface and binormal bi(t), i = 1, · · · , 4, are parallel

and continuous, then the number of reversals at four corners is even. That is
∏
i, j
σi( j) = 1, (i = 1, · · · , 4, j = 0, 1). (10)

Compatible with the constraint in Eq. (10), the signs of σi( j) (i = 1, · · · , 4, j = 0, 1) are chosen based on the
equations in Eq. (6).

4. B-spline surface interpolating B-spline asymptotic quadrilateral

Constructing the interpolating surface needs to satisfy the global boundary condition, that is, the boundary normal
vectors Ni(t) are continuous and satisfy Ni(t) = ±bi(t), i = 1, · · · , 4. Based on the Darboux frame, the transverse tangent
vectors Ti along the boundary curves ri(t) of the B-spline surface R(u, v) are defined as

T1(u) = Rv(u, 0), T3(u) = Rv(u, 1), T2(v) = Ru(0, v), T4(v) = Ru(1, v), (11)

and Ti(t) should lie in the tangent plane which is spanned by r′i(t) and [r′i(t) × r′′i (t)] × r′i(t) at the point ri(t). Then they
can be expressed as

Ti(t) = xi(t)r′i(t) + yi(t)[r′i(t) × r′′i (t)] × r′i(t), t ∈ [0, 1], (12)

where xi(t) =
5∑

j=0
αi jN j,3(t) and yi(t) =

1∑
j=0
βi jN j,1(t) are scalar functions over the knot vector Ui = {0, 0, 0, 0, ui4, ui5, 1, 1, 1, 1}

and V = {0, 0, 1, 1}, respectively.

4.1. Identification of transverse tangent vectors
The coefficients αi j and βi j of Ti(t) (i = 1, · · · , 4) are real and can be obtained from the following conditions:
• Interpolation of the tangent vectors,

T1(0) = r′2(0), T1(1) = r′4(0),T2(0) = r′1(0), T2(1) = r′3(0),

T3(0) = r′2(1), T3(1) = r′4(1),T4(0) = r′1(1), T4(1) = r′3(1).

T1(0) = r′2(0) is equivalent to

α10

u14
(∆P10) +

18β10

u3
14u15

[(∆P10) × (∆2P10)] × (∆P10) =
1

u24
(∆P20).

Then α10 and β10 can be represented as

α10 =
u14

u24
· (∆P10) · (∆P20)

||∆P10||2
, β10 =

u3
14u15

18u24
· det((∆P10) × (∆2P10), (∆P10), (∆P20))

||(∆P10) × (∆2P10) × (∆P10)||2 .

T1(1) = r′4(0) is equivalent to

α15

1 − u15
(∆P14) − 18β11

(1 − u14)(1 − u15)3 [(∆P14) × (∆2P13)] × (∆P14) =
1

u44
(∆P40),

then

α15 =
1 − u15

u44
· (∆P14) · (∆P40)

||∆P14||2
, β11 = −

(1 − u14)(1 − u15)3

18u44
· det((∆P14) × (∆2P13)], (∆P14), (∆P40))

||(∆P14) × (∆2P13)] × (∆P14)||2 .

Similarly, the first and the last coefficients of xi(t) and yi(t), i = 2, · · · , 4, can be solved.
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• Compatibility of the twist vectors,

Ru,v(0, 0) := T′1(0) = T′2(0),Ru,v(0, 1) := T′2(1) = T′3(0),

Ru,v(1, 0) := T′1(1) = T′4(0),Ru,v(1, 1) := T′3(1) = T′4(1).

Each equation above leads to two pairs of equations from corresponding coordinates, such that αi1 and αi4, i = 1, · · · , 4,
can be obtained. Additionally, if the angle between r′1(0) and r′2(0) at the corner P10 is A12, projecting T′1(0) and T′2(0) on
N12, we have

T′1(0) · N12 = τ1(0) ||r′1(0)|| ||r′2(0)|| sinA12, T′2(0) · N12 = −τ2(0) ||r′1(0)|| ||r′2(0)|| sinA12.

Obviously, T′1(0) ·N12 = T′2(0) ·N12 if and only if τ1(0) = −τ2(0), which satisfies the constraint (C3). Other relations can
be derived at the other corners in the same way.

The residual coefficients αi j = 0 (i = 1, · · · , 4, j = 2, 3) can be freely chosen, then Ti(t) are determined.

4.2. B-spline surface construction
It’s necessary to represent Ti(t) as B-spline form according to the expression of B-spline surface interpolating B-

spline curves. Since the degree of [r′(t) × r′′(t)] × r′(t) is quartic, the degree of Ti(t) is assumed to be at least quintic. In
order to ensure the interpolating surface of low degree, we let the degree of Ti(t) be quintic. Then

Ti(t)= xi(t)r′i(t) + yi(t)[r′i(t) × r′′i (t)] × r′i(t) =
13∑

k=0
Ei

kNk,5(t) +
13∑

k=0
Fi

kNk,5(t) =
13∑

k=0
(Ei

k+Fi
k)Nk,5(t), i = 1, · · · , 4,(13)

where Ei
k and Fi

k correspond to fourteen control points of B-spline functions and can be determined in the following.
Taking the compatibility of the interpolation condition Eq. (11) along the boundaries into consideration, we choose

that the degree of tensor-product B-spline surface R(u, v) is bi-quintic, that is

R(u, v) =
13∑
i=0

13∑
j=0

Qi, jNi,5(u)N j,5(v), (14)

where Qi, j, i, j = 0, · · · , 13, are the control points of the surface.

Let ∆Pi j1 =
Pi j1+1−Pi j1
ui j1+4−ui j1+1

, ∆2Pi j1 =
∆Pi j1+1−∆Pi j1

ui j1+4−ui j1+2
and Nk,p(t) (p = 1, · · · , 5) be defined over knot vectors

Ui
p = {0, · · · , 0︸  ︷︷  ︸

p+1

, ui4, · · · , ui4︸      ︷︷      ︸
p−1

, ui5, · · · , ui5︸      ︷︷      ︸
p−1

, 1, · · · , 1︸  ︷︷  ︸
p+1

} := {ti
0, · · · , ti

4p−1}.

The quintic B-spline functions defined on above knot vectors have 14 control points. That’s why the B-spline surface has
(13 + 1) × (13 + 1) control points. Based on the product formula of B-spline (Mørken, 1991), we have

xi(t)r′i(t) =
13∑

k=0
Ei

kNk,5(t),

where Ei
k =

3
10

∑
P2∈Π5

∑
j1

∑
j
αi j · ∆Pi j1 · α j,3,Ui

3,ti
Q3

(k) · α
j1,2,Ui

2,ti
P2

(k), and

ti
P2 = {· · · , ti

k, t
i
k+p1
, ti

k+p2
, ti

k+6, · · ·}, ti
Q3 = {· · · , ti

k, t
i
k+q1
, ti

k+q2
, ti

k+q3
, ti

k+6, · · ·}.

Here α
j1,m,Ui

m,ti
Pm

(k) and α
j,n−m,Ui

n−m,ti
Qn−m

(k) are discrete B-splines referred to Definition 2. Element pi (i = 1, · · · ,m) of

Pm = {p1, p2, · · · , pm} is chosen from In = {1, 2, · · · , n}, while Qn−m = {q1, q2, · · · , qn−m} = In − Pm, Πn =
∪

pi∈In
Pm.

Similarly, we have

r′i(t) × r′′i (t) =
7∑

k=0
Gi

kNk,3(t),

where Gi
k = 6 ∑

P1∈Π3

∑
j1

∑
j2
∆Pi j1 × ∆2Pi j2 · α j1,2,Ui

2,ti
Q2

(k) · α
j2,1,Ui

1,ti
P1

(k).

Notice that r′i(t) × r′′i (t) is actually quadratic, then

r′i(t) × r′′i (t) =
4∑

k=0
Hi

kNk,2(t),

7
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where Hi
k = P0

k (k = 0, · · · , 4), P2
k = Gi

k (k = 0, · · · , 7), l2 = 7, l j−1 = l j − 2, j = 1, 2,

P j−1
k =


P j

k, 0 ≤ k ≤ l j − 3,
P j

k

1−a j
k,2
− a j

k,2 P j−1
k−1

1−a j
k,2
, l j − 2 ≤ k ≤ l j − 1,

P j
k+1, l j ≤ k ≤ 4 + j,

and a j
k,2 is defined in (Wang and Deng, 2007).
Continue to use the product formula of B-spline (Mørken, 1991), we get

r′i(t) × r′′i (t) × r′i(t) =
10∑

k=0
Li

kNk,4(t), yi(t) r′i(t) × r′′i (t) × r′i(t) =
13∑

k=0
Fi

kNk,5(t),

where Li
k =

1
2
∑

P2∈Π4

∑
j1

∑
j3

Hi
j1 ×∆Pi j3 · α j1,2,Ui

2,ti
P2

(k) · α
j3,2,Ui

2,ti
Q2

(k), Fi
k =

1
5
∑

P1∈Π5

∑
j2

∑
j4
βi j2 ·Li

j4 · α j2,1,Ui
1,ti

P1
(k) · α

j4,4,Ui
4,ti

Q4
(k).

By the degree elevation formula of B-spline curve (Wang and Deng, 2007), the boundary cubic B-spline curve can
be elevated to the quintic as

ri(t) =
13∑
j=0

Mi
jN j,5(t),

such that the outermost control points Q0,i, Qi,0, Q13,i, Qi,13 can be determined by the boundary control points Mi
j. Name-

ly,

Q0,i =M1
i , Qi,0 =M2

i , Q13,i =M3
i , Qi,13 =M4

i , i = 0, · · · , 13. (15)

From Eq. (13) and Eq. (14), we can get (i = 1, · · · , 12)

Q1,i =M1
i +

u14
5 (E1

i + F1
i ), Q12,i =M3

i −
1−u35

5 (E3
i + F3

i ),
Qi,1 =M2

i +
u24
5 (E2

i + F2
i ), Qi,12 =M4

i −
1−u45

5 (E4
i + F4

i ),
(16)

which is compatible at the corner points. It’s easy to see that the vectors M1
i Q1,i are parallel to the vectors O(E1

i + F1
i ),

where O is the origin, then the geometric relations between them refer to Fig. 2. The other two arrays of control points
along the other three boundaries have the similar geometric relations.

Fig. 2 The geometric relations of two arrays of control points along r1(t).

Notice that, two arrays of control points along the boundary curves have been obtained. The rest control points of
the surface can be freely chosen or obtained by minimizing the thin plate spline energy∫ 1

0

∫ 1

0
(||Ruu(u, v)||2 + 2||Ruv(u, v)||2 + ||Rvv(u, v)||2)dudv. (17)

5. Examples

Example 1. For cubic B-spline boundary curves represented as Eq. (8), two arrays of control points of the resulting
B-spline surface are obtained by Eq. (15) and Eq. (16), while the other control points of the surface are obtained from
Eq. (17). In the following examples, the control points of the surfaces are determined in the same way. Figure 3 shows
two pairs of B-spline surface of bi-quintic interpolating the cubic B-spline asymptotic quadrilateral.
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(a) Quadrilateral and control points. (b) Two arrays of control points. (c) The resulting B-spline surface.

(d) Quadrilateral and control points. (e) Two arrays of control points. (f) The resulting B-spline surface.

Fig. 3 B-spline surface interpolating the B-spline asymptotic quadrilateral.

Example 2. A curve satisfying r′′ = 0, that is the curve with zero curvature, is a line, which is also an asymptotic curve
from Lemma 1. For r′′1 = 0 and r′′i , 0, i = 2, 3, 4, based on the analysis in Section 3.2, we can construct a surface
bounded by a quadrilateral with one zero curvature. To be compatible with the construction process, some conditions are
modified as k1(0) = 0, k1(1) = 0, λ13 = 0, µ12 = 0, τ2(0) = 0, τ4(0) = 0. And the definition of the tangent vector T1(t) is
changed as

T1(t) = x1(t)r′1(t) + y1(t)r′2(t) + z1(t)r′4(1 − t), t ∈ [0, 1],

where x1(t) =
5∑

j=0
α1 jN j,3(t), y1(t) =

5∑
j=0
β1 jN j,3(t), z1(t) =

5∑
j=0
δ1 jN j,3(t) satisfying x1(0) = 0, y1(0) = 1, z1(0) = 0 and

x1(1) = 0, y1(1) = 0, z1(1) = 1. Similar to the construction in Example 1, we can get the resulting surface. Figure 4
shows two quintic B-spline surfaces interpolating the cubic B-spline asymptotic quadrilaterals with one linear boundary
curve, where both r2(t) and r4(t) curve upwards and downwards, respectively.

(a) r2(t), r4(t) curve upwards. (b) r2(t), r4(t) curve down-
wards.

Fig. 4 B-spline surface interpolating the B-spline asymptotic quadrilateral with one linear boundary curve.

Example 3. For two of the boundary curves with zero curvatures, we assume r′′1 = 0, r′′2 = 0 and r′′i , 0, i = 3, 4.
Besides the conditions related with r1 in Example 2, the conditions related with r2 can be set as k2(0) = 0, k2(1) = 0,
λ22 = 0, µ23 = 0, τ1(0) = 0, τ3(0) = 0, T2(t) = x2(t)r′2(t) + y2(t)r′1(t) + z2(t)r′3(1 − t), and x2(t), y2(t), z2(t) are cubic
B-splines. Figure 5-(a), (b) illustrate two B-spline surfaces interpolating the B-spline asymptotic quadrilaterals with two
intersecting lines. Similarly, we can construct the B-spline surface interpolating the B-spline asymptotic quadrilaterals
with two opposite lines as shown in Fig. 5-(c), (d).

Example 4. By the method presented in above examples, the B-spline surfaces interpolating quadrilateral with three lines
can be constructed as shown in Fig. 6.
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(a) r3(t) curves upwards. (b) r3(t) curves downwards.

(c) r2(t) curves upwards. (d) r2(t) curves downwards.

Fig. 5 B-spline surface interpolating the B-spline asymptotic quadrilateral with two linear boundary curves.

(a) r4(t) curves upwards. (b) r4(t) curves downwards.

Fig. 6 B-spline surface interpolating the B-spline asymptotic quadrilateral with three linear boundary curves.

6. Boundary curves with inflection points

If ξ is an inflection of curve r(t), then r′(ξ)×r′′(ξ) = 0, and the left and the right limits of the binormal vector b(t) are
anti-parallel. In fact, if each of the boundary curves ri(t), i = 1, . . . , 4, has one or two inflections, then the total number of
reversals of the binormal vectors b(t) along the boundary curves is still even. The cubic B-spline quadrilateral satisfying
the constraints (C1) − (C3) with inflections can be constructed as the boundary curves of B-spline surface, based on the
previous analysis. The detail will be omitted and we show the resulting surfaces by two examples as follows.

Example 5. Let ri(t), i = 1, . . . , 4, be orthogonal at four corner points and each of them has only one inflection. The
bi-quintic B-spline surface interpolates the B-spline asymptotic quadrilateral with these inflections as shown in Fig. 7.

(a) Each boundary curve
with one infection.

(b) The resulting B-spline
surface.

Fig. 7 B-spline surface interpolating the B-spline asymptotic quadrilateral with inflections.
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Example 6. Each curve of ri(t), i = 1, . . . , 4, has two inflection points. Figure 8 shows the bi-quintic B-spline surface
interpolating the B-spline asymptotic quadrilateral.

(a) Each boundary curve with
two infections.

(b) The resulting B-spline
surface.

Fig. 8 B-spline surface interpolating the B-spline asymptotic quadrilateral with inflections.

7. Conclusions

In the paper, we generalize the results on surfaces interpolating one or two curves as the asymptotes to construct
surface interpolating quadrilateral as its asymptotic boundary curves. For the given corner data including positions,
tangents and curvatures of a B-spline quadrilateral, we analyze the constraint conditions for the boundary curves to
be asymptotic curves. Similar to the interpolated geodesic or lines of curvature quadrilateral, the identify constraints
on boundary quadrilateral are required to be satisfied for the surface interpolating the asymptotic quadrilateral. After
identifying optimized asymptotic quadrilateral, a smooth B-spline surface with minimized thin plate spline energy is
constructed to interpolate them. For the cubic B-spline boundary quadrilateral, the degree of a tensor-product B-spline
surface is bi-quintic. The presented method is illustrated by several examples including the condition that the boundary
quadrilateral with zero curvatures. Interpolating asymptotic quadrilaterals with inflections is also discussed in the paper
and two examples show the resulting tensor-product B-spline surfaces. Be compatible with commercial CAD systems,
the surfaces constructed by above method are smooth and of low degrees. The experimental results show good agreement
with the theoretical analysis.

The proposed construction model is realized by the B-spline surface, which is more flexible than the ruled surfaces
in CAD model for architecture and mechanical design. And the surface interpolating the closed boundary curve is more
interesting for surface modeling in architecture and mechanical design. Moreover, some present researches also focused
on the applications of the asymptotic curve of surface in architecture, such as (Flory and Pottmann, 2010). These facts
indicate the potential applications of the proposed method in architecture, architectural geometry, mechanical design or
other fields. We will study on them in our future work.
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