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Abstract
We determine all helical surfaces in three-dimensional Euclidean space which possess
a constant ratio a := κ1/κ2 of principal curvatures (CRPC surfaces), thus providing
the first explicit CRPC surfaces beyond the known rotational ones. Our approach is
based on the involution of conjugate surface tangents and on well chosen generating
profiles such that the characterizing differential equation is sufficiently simple to be
solved explicitly. We analyze the resulting surfaces, their behavior at singularities that
occur for a > 0, and provide an overview of the possible shapes.

Keywords Helical surface · Surface with a constant ratio of principal curvatures ·
Weingarten surface

Mathematics Subject Classification 53A05 · 53A10 · 53C42

1 Introduction

Surfaces which possess a relation F(κ1, κ2) = 0 between their principal curvatures
κ1, κ2 are named after Weingarten (1861) who studied them in connection with a
characterization of those surfaces that are isometric to rotational surfaces. The latter
are exactly the focal surfaces of Weingarten surfaces. There has been a huge interest
in important special cases, such as surfaces with constant Gaussian or mean curvature,
but apart from those, there are only very few explicitly known Weingarten surfaces.

In this paper, we contribute to surfaces in Euclidean R
3 which possess a constant

ratio of principal curvatures κ1/κ2 =: a. We exclude surfaces with one vanishing
principal curvature (developable surfaces) and call the others CRPC surfaces. CRPC
surfaces are a natural generalization of minimal surfaces (a = −1). However, in big
contrast to minimal surfaces, very little is known about them. Explicit parameteri-
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zations are only available for rotational CRPC surfaces (Hopf 1951; Kühnel 2013;
Mladenov and Oprea 2003, 2007; Lopez and Pampano 2020; Wang and Pottmann
2022). Lopez and Pampano (2020) recently presented a classification of all rotational
surfaces with a linear relation κ1 = aκ2 + b between principal curvatures, including
a study of the special case b = 0 of CRPC surfaces. Their work also contains a varia-
tional characterization of the profiles of these surfaces. Rotational CRPC surfaces with
K < 0 have also been characterized via isogonal asymptotic parameterizations f (u, v)

where | fu | = | fv| (Riveros and Corro 2012, 2013; Stäckel 1896). Moreover, it has
been shown thatWeingarten surfaces to a linear relation of the form aκ1+bκ2+c = 0
are rotational if they are foliated by a family of circles (López 2008).

Jimenez et al. (2020) derived CRPC surfaces via a Christoffel-type transformation
of certain spherical nets, with a focus on discrete models. Effective methods for the
computation of discrete CRPC surfaces (Wang and Pottmann 2022) provided some
insight on the shape variety of CRPC surfaces. As these are based on numerical
optimization, one cannot derive precise mathematical conclusions, but conjectures as
basis for further studies.

To add new explicit representations of CRPC surfaces beyond the rotational ones,
one will look into other special surface classes. Unfortunately, some classes are
excluded quickly: A ruled CRPC surface has the rulings as one family of asymp-
totic curves and the other family of asymptotic curves needed to intersect the rulings
under a constant angle. The set of second asymptotic directions A(t) along a ruling R
is a regulus on a ruled quadric. This contradicts a constant angle between R and A(t)
except for a right angle, leading to the helicoid as ruled minimal surface. One can also
apply a result byKühnel (2013), which states that ruledWeingarten surfaces are helical
or rotational, and check that there are no CRPC surfaces among them except helicoids.
Likewise, channel surfaces (envelopes of one-parameter families of spheres) can only
be Weingarten surfaces if they are rotational surfaces or helical pipe surfaces, so that
the only CRPC channel surfaces are just the rotational ones.

In this paper, we explicitly determine all helical CRPC surfaces. Clearly, this
amounts to solving a 2nd order ordinary differential equation and may seem like
a simple exercise. However, this ODE turns out to be very complicated even for natu-
ral choices of profile curves, such as intersections with planes through the helical axis
or orthogonal to it.

We show how to choose proper generating curves of the helical surfaces so that the
ODE is sufficiently simple and can be solved explicitly. We do not compute principal
curvatures for setting up the ODE, but work only with the involution of conjugate sur-
face tangents. Profiles are chosen so that they directly contribute to the determination
of this involution. Our approach works with a parameter that is agnostic to the change
from curvature ratio a to 1/a, resolving the difficulty in distinguishing between the
two principal curvature directions on a helical surface.

The explicit representation of all helical CRPC surfaces (Theorem 3) is then studied
from different viewpoints. In particular, we investigate the singularities that appear for
positive curvature, and we classify the potential shapes. Remarkably, there is a way
to distinguish between CRPC surfaces with ratio a and 1/a for a > 0, and we show
that this ratio switches at the singularities.
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By theway, the existence of singularities could only be expected, but not be shown at
the discretemodels inWang and Pottmann (2022). Finally, wemention that our interest
in CRPC surfaces originated from various applications in freeform architecture (Pellis
et al. 2021b; Schling et al. 2018; Tellier et al. 2020).

2 Deriving the characterizing differential equation

2.1 CRPC surfaces via the involution of conjugate tangents

Surfaces with a constant ratio a = κ1/κ2 of principal curvatures κ1, κ2 with κi �= 0,
can be characterized by the involution of conjugate surface tangents at each of its
points. In the principal frame at a surface point, the involution between conjugate
tangent vectors (x1, x2) and (x̄1, x̄2), is given by κ1x1 x̄1 + κ2x2 x̄2 = 0. In our case, it
reads

ax1 x̄1 + x2 x̄2 = 0. (1)

Principal tangents (1, 0), (0, 1) are conjugate to each other. Asymptotic tangents
(1,±√−a) are self-conjugate, but real only for Gaussian curvature K = κ1κ2 < 0.
For K > 0, tangents (1,±√

a) are conjugate to each other and symmetric with respect
to the principal directions. For positive and negative curvature, we define (1,±√|a|)
as characteristic tangents. Then, a CRPC surface is characterized by a constant angle
2α between the characteristic tangents at all surface points, where tan α = √|a|.

We now apply a method of constructive projective geometry, by intersecting the
pencil of surface tangents at a surface point p with a circle cs (Steiner circle; center
ms , radius rs) that passes through p and lies in the tangent plane τ(p) at p (see Fig. 1,
left). Each tangent T intersects cs in two points: p and another point t ′. The map
π : T �→ T̄ is transformed to an involution πs : t ′ �→ t̄ ′ on cs , and lines t ′ t̄ ′ pass
through a fixed point (involution center) Is .

Lemma 1 A surface with constant principal curvature ratio a = κ1/κ2 is character-
ized as follows: At each surface point p, we project the involution of conjugate surface
tangents onto a Steiner circle cs . Then, the radius rs of cs and the distance ds of the
involution center Is to the center ms of cs possess a constant ratio,

k = ds
rs

=
∣
∣
∣
∣

1 − a

1 + a

∣
∣
∣
∣
=

√

1 − K

H2 . (2)

Proof For K < 0, Is is outside cs (Fig. 1, left, and I−
s in Fig. 1, right) and the fixed

points of πs are the contact points of tangents from Is to cs . These points lie in the
asymptotic tangents. For K > 0, the line through Is which is orthogonal to Isms

intersects cs in points of the characteristic tangents (case I+
s in Fig. 1, right).

By elementary geometry, we have | cos 2α| = ds/rs for K > 0 and | cos 2α| =
rs/ds for K < 0. Noting cos 2α = (1− tan2 α)/(1+ tan2 α) and that tan2 α equals a
for K > 0 and −a for K < 0, we obtain (2). ��
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Fig. 1 Left: Involution of conjugate tangents at a point p, projected onto a circle cs through p: corresponding
points on cs are collinear with the involution center Is . Right: Relation between characteristic angle 2α and
involution center I+s (for K > 0) and I−s (for K < 0)

Remark 1 For most surfaces, also helical surfaces, there is no clear way to select one
principal direction as the first one. Hence, it is an advantage that k is agnostic to that,
which is also reflected in its expression via K and mean curvature H . Let us note the
special cases which we are not interested in:

(a) Since neither plane nor sphere are helical, it is impossible to have k = 0, a = 1;
(b) Developable surfaces, i.e. k = 1, a ∈ {0,∞};
(c) Minimal surfaces, i.e. k = ∞, a = −1.

2.2 Application to helical surfaces

In Euclidean R3, we use Cartesian coordinates (x, y, z) and consider a helical motion
about the z-axis with pitch p. It is composed of a continuous rotation with angular
velocity 1 about the z-axis and a continuous translation with velocity p parallel to it.
A point with initial position (x0, y0, z0) generates a helical path, parameterized with
the rotation angle v as

X(v) = (x0 cos v − y0 sin v, x0 sin v + y0 cos v, z0 + pv), v ∈ R.

Acurve X0(t) = (x0(t), y0(t), z0(t)) generates a helical surface X(v, t), whichmoves
in itself under the helical motion. Thus, the same surface may be generated by any
of its curves that is transversal to the helical paths. We use this freedom in choosing
X0(t) to simplify the search for helical CRPC surfaces.

In the tangent planes of X we have to find two pairs of conjugate directions to set up
the involution. For that, we recall the following geometric interpretation of conjugate
directions. Given a curve c in a surface, we consider the envelope of tangent planes
along c. This is a certain developable surface D. At each point of the curve c, the curve
tangent T and the ruling T̄ of D are conjugate tangents.

The tangent vector Tp(X) of the helical path through a point X is Tp(X) =
(−y, x, p). It is well known that its conjugate direction T̄p is the direction of steepest
descent against the xy-plane �, since the envelope of tangent planes along a helical
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path is a developable helical surface whose rulings are lines of steepest descent in their
tangent planes.

We now take as profile curve X0(t) one where the envelope D of tangent planes
along it is simple. We choose D as a general cylinder with x-parallel rulings and write
its tangent planes in the form y = t z − f (t) . This is no restriction, since the helical
path tangents are never parallel to � and thus no tangent plane of X and D can be
parallel to � (i.e. t �= ∞).

The rulings of D arise by intersection of tangent planes with their derivative planes
z = f ′(t), leading to the parameterization D(t, w) = (w, t f ′ − f , f ′) of D. The
curve X0(t) ⊂ D along which D is tangent to the helical surface X is the set of those
points on D whose path tangents ( f − t f ′, w, p) are tangential to D, i.e. orthogonal
to the normal (0, 1,−t) of D. This yields w = pt ,

X0(t) = (pt, t f ′(t) − f (t), f ′(t)) . (3)

We call this curve the contour for projection parallel to the x-axis (or just contour for
short) and use it as generating profile of a helical CRPC surface .

Lemma 2 For a helical CRPC surface, the function f in the parameterization (3) of
the contour satisfies the differential equation

4p2(1 + t2) + ((1 + t2) f ′′ + (t f ′ − f ))2 = k2((1 + t2) f ′′ − (t f ′ − f ))2 . (4)

Proof The contour tangents, X ′
0 = (p, t f ′′, f ′′) , are conjugate to (1, 0, 0). The helical

path tangent vectors at the contour are ( f − t f ′, pt, p) , and they are conjugate to the
directions of steepest descent in the tangent planes of D. We rotate each tangent plane
of D (and X ) at X0(t) about the x-parallel ruling of D so that it becomes parallel to the
xz-plane. The new coordinates (x̃, 0, z̃) of tangent vectors are related to the original

ones (x, y, z) by (x̃, z̃) =
(

x, z
√
1 + t2

)

.

In the rotated position, we set up the involution of conjugate tangents and use a
Steiner circle cs with radius rs = √

1 + t2/2 and centerms = (0, rs) (see Fig. 2). The
line of steepest descent (z̃-axis) corresponds to the path tangent T̃p,

(0, 1) �→
(

f − t f ′, p
√

1 + t2
)

,

leading to line H through Is , which passes through (0, 2rs) and is orthogonal to T̃p,

H : ( f − t f ′)x̃ + p
√

1 + t2 z̃ = p(1 + t2).

The horizontal direction (x̃-axis) corresponds to the contour tangent T̃c,

(1, 0) �→
(

p, f ′′√1 + t2
)

.
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Fig. 2 Constructing the
involution center in a tangent
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Since the x̃-axis touches cs , T̃c contains the involution center Is . Hence Is = H ∩ T̃c,

Is = 1 + t2

(1 + t2) f ′′ − (t f ′ − f )

(

p, f ′′√1 + t2
)

.

ByLemma1,wehave to express a constant ratio k ≥ 0 betweends and rs ,‖Is−ms‖2 =
k2r2s , which yields the characterizing differential Equ. (4). ��
Remark 2 Since CRPC surfaces invariant under similarities, we can choose any pitch
p �= 0 and set 4p2 = 1. Thus in the rest of the paper, we only consider

1 + t2 + ((1 + t2) f ′′ + (t f ′ − f ))2 = k2((1 + t2) f ′′ − (t f ′ − f ))2 . (5)

Remark 3 Helical minimal surfaces are obtained with k = ∞ and therefore charac-
terized by

(1 + t2) f ′′ − t f ′ + f = 0 . (6)

However, the derivation of this equation can be shortened a lot: The involution of
conjugate tangents is the reflection at the (orthogonal) asymptotic directions. Since
x-parallel and steepest tangent are orthogonal, the conjugate tangents, namely path
tangent and contour tangent,must also be orthogonal. This yields (6), inwhich the pitch
p does no longer appear. Hence the tangent cylinders orthogonal to the axis are the
same as for rotational surfaces (p = 0), and one arrives at Wunderlich’s generation of
helical minimal surfaces as envelopes of a cylinder with a catenary as orthogonal cross
section (Wunderlich 1952). Wunderlich derived these surfaces via Lie’s generation of
minimal surfaces as translation surfaces of conjugate complex isotropic curves. At
its geometric core lies the fact that the isotropic tangents are conjugate to each other
precisely for minimal surfaces.
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3 Solution of the differential equation

Solving (5), we obtain the following parameterization of all helical CRCP surfaces.

Theorem 3 Any helical surface X with a constant principal curvature ratio a is gen-

erated as follows. Let k =
∣
∣
∣
a−1
a+1

∣
∣
∣ and functions g(s), t(s) be defined by

g(s) = (k − 1)s2 − (k + 1)

4ks

√

2Csk+1

s2 + 1
, t(s) =

√

2Csk+1

s2 + 1
− 1, (7)

where s > 0,C > 0, 2Csk+1 > s2 + 1. Let H(v, ·) be the helical motion with pitch
1/2,

H(v, (x0, y0, z0)) = (x0 cos v − y0 sin v, x0 sin v + y0 cos v, z0 + v

2
) .

Then X can be parameterized as

X(v, s) = 2pH(v, Xi (s)), s ∈ IC , v ∈ R, i = 0, 1,

where Xi (s) is one of the following two curves,

X0(s) =
(
t(s)

2
, g(s),

∫
g′(s)
t(s)

ds

)

, X1(s) =
(

− t(s)

2
, g(s),−

∫
g′(s)
t(s)

ds

)

, (8)

IC :=
{

s : s > 0, 2Csk+1

s2+1
> 1

}
1 and p is the pitch of X.

Proof By setting g = t f ′ − f we can reduce ODE (5) to

1 + t2 +
((

t + 1

t

)

g′ + g

)2

= k2
((

t + 1

t

)

g′ − g

)2

. (9)

Further, letting g = u
√
1 + t2 and noticing that (t + 1

t )g
′ − g = u′

t (1+ t2)
3
2 , we get

1 +
(

2u +
(

t + 1

t

)

u′
)2

= k2
((

t + 1

t

)

u′
)2

.

This leads us to a substitution for some function s = s(t) such that

2u +
(

t + 1

t

)

u′ = sinh(s), k

(

t + 1

t

)

u′ = cosh(s) .

1 We always assume that the constant C is large enough s.t. IC is nonempty.
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It immediately shows that

2u = sinh(s) − cosh(s)

k
. (10)

Taking the derivative and combiningwith the last formula in the substitutionwe obtain

s′(k − tanh(s)) = 2t

1 + t2
.

This equation is separable in variables and thus can be solved easily:

ks − ln(cosh(s)) + C ′ = ln(1 + t2) ,

or

t2(s) = Ceks

cosh(s)
− 1 ,

where C ′ is a constant and C = eC
′

> 0. Together with Equ. (10) we obtain two
parametric solutions for ODE (9), namely

g(s) = 1

2

(

sinh(s) − cosh(s)

k

)
√

Ceks

cosh(s)
, t(s) =

√

Ceks

cosh(s)
− 1

and (g(s),−t(s)). Finally, since g′(t) = t f ′′(t) and by total differentiation we have

g′(s)
t ′(s)

= g′(t) = t f ′′(t) = t(s)
( f ′(t))′s
t ′(s)

.

Thus,

f ′(t(s)) =
∫

g′(s)
t(s)

ds .

Replacing es by s, we obtain the algebraic parameterizations in the theorem. ��

Two examples of helical CRPC surfaces based on this explicit representation and
using the profile curve X0 are shown in Fig. 3. It may seem that the two profile curves
X0(s), X1(s) generate two different CRPC surfaces. However, we will now show that
this is not really the case (Fig. 4).

Proposition 4 The two curves X0(s), X1(s) in Equ. (8) generate two helical surfaces
which can be joined to a single C∞ CRPC surface.
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Fig. 3 Two helical CRPC surfaces generated by the profile curve X0. The surface in the first row has a
curvature ratio a < 0, the one in the 2nd row belongs to a > 0. 1st column: Cylinder surface tangent to the
helical CRPC surface along X0. 2nd column: Top view of X0. 3rd column: Intersection with the xz-plane

Fig. 4 The two curves X0, X1 given in Equ. (8) generate the upper half and the lower half of a single
smooth helical CRPC surface

Proof X0(s) and X1(s) are C∞ in the domain IC =
{

s : s > 0, 2Csk+1

s2+1
> 1

}

with

respect to s.We now show that the complete contour curve is obtained by gluing curves
X0(s) and X1(s) properly together (Fig. 4). To show this, we focus on the continuous

function h(s) = 2Csk+1

s2+1
, where s ∈ [0,∞). Since h(0) = 0 and h(s) > 1 for s ∈ IC ,

by the Intermediate Value Theorem there exists a positive number s0 = inf IC such
that h(s0) = 1 or equivalently 2Csk+1

0 = s20 + 1. No matter whether k < 1 or k ≥ 1,
it is easy to observe that the function h(s) is strictly increasing at s = s0 which gives
h′(s0) > 0 or equivalently (k − 1)s20 + k + 1 > 0. Since g′(s) and

√
s2 + 1 are
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continuous near s0, when s → s+
0 we have

g′(s)
t(s)

= g′(s)
√
s2 + 1√

2Cs1+k − s2 − 1
= O

(
1√

2Cs1+k − s2 − 1

)

= O

(
1√

s − s0

)

.

The last equality holds because

lim
s→s+0

2Csk+1 − s2 − 1

s − s0
= lim

s→s+0
(2C(k + 1)sk − 2s) = (k − 1)s20 + k + 1

s0
> 0 .

Again, the last equality holds because 2Csk+1
0 = s20 + 1.

The above argument guarantees the existence of the integral
∫ g′(s)

t(s) dswhen s → s+
0 .

Wemay add a suitable constant to the z−coordinate of X1(s) s.t. X0(s0) = X1(s0) and
glue these two branches at this point. Intuitively, the entire curve should be smooth at
the glued point since it satisfies the global CRPC property. The whole curve is derived
from the solution of ODE (9) and t(s0) = 0 is indeed a singularity of (9). However, by
multiplying with t2 on both sides one can easily find that the singularity is removable.
Thus according to the theory of ODEs, the solution is smooth at t = 0 (i.e. s = s0). ��

4 Shape analysis and classification

4.1 Top views of the profile curves

Helical CRPC surfaces are a generalization of helical minimal surfaces. For the latter,
it is known that the profiles (contours for parallel projection orthogonal to the helical
axis) appear as hyperbolas in the top view (Wunderlich 1952). Hence, it is natural to
see how complicated the top views get for CRPC surfaces. We show the following
result.

Proposition 5 For any rational value of k, the top view of the profile curve Xi (s) of a
corresponding helical CRPC surface lies in an algebraic curve.

Proof The top view of the profile is given by (x, y) = (±t/2, g). Assume k = n
m and

notice that

t2(s) + 1 = 2Csk+1

s2 + 1
, g2(s) =

(
(k − 1)s2 − (k + 1)

4k

)2
2Csk−1

s2 + 1
.

Thus both (t2(s) + 1)m and g2m(s) are rational functions of s. In fact, there is a
polynomial P(t, g) such that P(t(s), g(s)) = 0, ∀ s. More specifically, we have

g2(s)

t2(s) + 1
= 1

16k2

(

(k − 1)2s2 + (k + 1)2

s2
− 2(k2 − 1)

)

. (11)
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This quadratic equation in s2 allows us to express s2 in the form s2 = A + B where
A, B2 are rational functions of (t, g). Further, let

F := (t2(s) + 1)2m = (2C)2m(s2)n+m

(s2 + 1)2m
= P1 + Q1B

P2 + Q2B

where Pi , Qi are rational functions of (t, g). This step can be simplified when m, n
have the same parity, in which case

F := (t2(s) + 1)m = (2C)m(s2)
n+m
2

(s2 + 1)m
= P1 + Q1B

P2 + Q2B
.

Finally, since

B2 =
(

P1 − FP2
Q1 − FQ2

)2

we get the desired polynomial by taking the numerator of

B2(Q1 − FQ2)
2 − (P1 − FP2)

2 = 0.

��
Remark 4 By Equ. (11) we can identify t2 + 1 as common denominator of A and B,
and thus all Pi , Qi admit powers of t2 + 1 as their denominators. By tracking the
degree in each step of the proof, it is not hard to obtain 4(3m + n) as an upper bound
of the degree of the final algebraic curve.

Example 1 We compute the top view of X0(s) for k = 3, based on the proof of
Proposition 5. Omitting the details, we arrive at

(
C

3
− 1

16
− x2

4
− y2

4

)

(4x2 + 1)2 − 4C2

9
(4x2 + 1) + 6Cy2(4x2 + 3y2 + 1) = 0 .

seeing that the curves are of algebraic order 6. They pass through the absolute points
and possess contact of order 3 with the ideal line at the ideal point of the x-axis. Fig. 5
shows the resulting curves for different values of C .

4.2 Singularities

In a study of discrete CRPC surfaces, helical ones have been computed via numerical
optimization (Wang and Pottmann 2022). There, it appeared that the positively curved
ones among them should have singularities. However, the singularities could not be
computed, since their formation has been prevented by fairness functionals which are
required in that approach. Now, the presence of singularities is easy to see.
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Fig. 5 Top views of the profile for k = 3 and different values of C . Left: C = 1/8; the contour lies on one
side of the xz-plane. Middle: C = 3/8; the contour touches the xz-plane and the z−axis lies on the helical
surface. Right: C = 10; the contour crosses the xz-plane. The path tangent Tp is in asymptotic direction at
points 1, 1̄ and the contour tangent Tc is in asymptotic direction at points 2, 2̄

Proposition 6 Positively curved helical CRCP surfaces possess singular curves.

Proof X ′
0(s) has a common factor of each coordinate,

X ′
0(s) = h′(s)

(
1

4t(s)
,
(k + 1)s2 − k + 1

8ks
√
h(s)

,
(k + 1)s2 − k + 1

8kst(s)
√
h(s)

)

(12)

where

h′(s) = 2Csk((k − 1)s2 + 1 + k)

(s2 + 1)2
.

Thus a cusp occurs if s = sk =
√

1+k
1−k , in which case we must have k < 1 (i.e.

a > 0); see Fig. 6. In this case, t(s) has a maximum at s = sk and then decreases
until t(s′

0) = 0 for some s′
0 > sk > s0. With the same argument as in Proposition 4,

we know that X0(s) and X1(s) can be glued smoothly at s = s′
0 (Fig. 4). If we keep

the gluing procedure with a sequence of profiles, we obtain a periodic curve. This
is illustrated in Fig. 7 for different values of k via the intersections of helical CRPC
surfaces with the (x, z)−plane. ��

Under the helical motion, X0(sk) generates a singular curve. In the next subsection,
we will show that it is natural to consider the curvature ratio a switching to 1/a when
moving across a singular helix. So, for convenience we split X0(s) into two curves
X+
0 (s), s ≥ sk and X−

0 (s), s ≤ sk .
One question arises: Do these two curves actually stop at s = sk or do they just

share the same tangent here? In other words, can any of them, say X−
0 (s), be continued

a little bit to s = sk + ε for some ε > 0? The answer is no! Before a rigorous proof
we would like to illustrate such a situation with a simple example.

Example 2 Consider the initial value problem

y′(x) = 1 + √

y(x), y(0) = 0 .
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Fig. 6 Surface generated by X0
near the cusp. Right: Top view

z−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axisz−axis

k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3k = 3 k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+k = 1+
k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3k = 1/3

k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7k = 3/7

k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2k = 1/2

Fig. 7 Typical intersections of helical CRPC surfaces with planes through the helical axis. As k → 1+, the
surface tends to a developable surface which is generated by the tangents of a helical path. As k → 1−,
which is not shown in this graph, the surface tends to a cylinder, so the intersection is just a straight line
parallel to the z−axis

By separation of variables, we obtain the implicit solution

2
√

y(x) − 2 ln (1 + √

y(x)) = x .

This function is well defined in the first quadrant because it is monotone. But it is
impossible to continue this solution at the origin since y′(0) = 1 and any continuation
will cause a negative value for y(x).

The above example can be generalized to our case, i.e. ODE (5):

Proposition 7 A profile curve X0(s), as a solution of equation (5), cannot be continued
beyond a singularity X0(sk).

Proof If we set w(t) = (t + 1
t )g

′(t), (5) is a quadratic equation 1+ t2 + (w + g)2 =
k2(w − g)2 of w, which essentially consists of two equations. The two solutions meet
each other when the discriminant D(t, g) = 16k2g2 + 4(k2 − 1)(1+ t2) = 0. We can
show that D(t(sk), g(sk)) = 0.

On the other hand, although X ′
0(sk) = 0, the limit tangent at s = sk does exist.

According to Equ. (12), the x, y−coordinates of a tangent vector are

T (s) =
(

1

4t(s)
,
(k + 1)s2 − k + 1

8ks
√
h(s)

)

.
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Noting ∇D = (8(k2 − 1)t, 32k2g), we have

∂D

∂T

∣
∣
∣
∣
s=sk

= ∇D(t(sk), g(sk)) · T (sk) = −6 − 2k2 < 0 .

This means that any continuation at s = sk will cause a negative value for D(t, g).
Thus, X−

0 (s) cannot be continued at s = sk . A similar argument applies to X+
0 (s). ��

4.3 Shape classification

Finally, we aim at a classification of all helical CRPC surfaces with a given constant k.
There is an important difference to the well-known case of rotational CRPC surfaces.
There, the only parameter which influences the shape, is the constant curvature ratio
a. In contrast, the shape of a helical CRPC surface does not only depend on k (recall
k = |1 − a|/|1 + a|), but also on the constant C .

For convenience, we adopt the following basic setup.

(1) We focus on those points of the surface where individual solutions have been glued
together. Their tangent planes are parallel to the helical axis. For positive curvature
(k < 1), we have two such positions, associated with s = s0, s = s′

0 respectively
and we will use X−, X+ to clarify.

(2) We use X(v, s) from Theorem 3 to represent the surface and when constant C is
involved in the discussion, we write X(v, s;C).

(3) Notice that near the glued point, t is a monotone function of s. This allows
us to locally take t as the parameter. Thus the surface and the glued point are
X(v, t), X(0, 0) respectively.2

(4) Any shift along the z− axis will not change the shape of the surface. Hence we
can assume that X(0, 0) (or X−(0, 0) etc.) lies on the y− axis.

The case of positive curvature. For k < 1, the helical path of the cusp splits the
surface into two parts (see Fig. 7). It is easy to see that, when C varies, the outer part
(denoted by X−(v, t), corresponding to the longer segments between two cusps in
Fig. 7) stays outer and the inner part (denoted by X+(v, t), belonging to the shorter
segments between two cusps in Fig. 7) stays inner. The classification is based on that,
answering the question whether a part should be associated with curvature ratio a or
1/a.
Distinguishing principal directions. The principal directions of a rotational surface are
the tangents of its parallel circles and meridians. Thus, the associated principal cur-
vatures can be labeled as κ1 and κ2 respectively. If we set κ1/κ2 = a or κ1/κ2 = 1/a
for some constant a �= 0,±1, there will be two essentially different (i.e. non-similar)
surfaces corresponding to each case (see e.g. Kühnel 2013;Wang and Pottmann 2022).
However, up to now everything we discussed about helical CRPC surfaces is deter-
mined by the constant k = |1 − a|/|1 + a| = |1 − 1

a |/|1 + 1
a |, where the cases

κ1/κ2 = a and κ1/κ2 = 1/a are not distinguished at all. We will now provide a way
to label the principal curvatures.

2 This new parameterization considerably reduces the calculation for derivatives in the light of ODE (9)
when t = 0.
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Proposition 8 For a positively curved helical CRPC surface (k < 1), the ratio of
normal curvatures κv/κt of the helical path and profile (contour) at the points with a
tangent plane parallel to the helical axis tends to different values for the outer part
X− and the inner part X+, when C → ∞, namely

lim
C→∞

κ−
v

κ−
t

= 1 − k

1 + k
, lim

C→∞
κ+
v

κ+
t

= 1 + k

1 − k
. (13)

This allows for a consistent labeling of principal curvatures as κ1 and κ2, leading to
different curvature ratios a and 1/a for the outer and inner parts of the surface, which
are separated by the singular helices.

Proof We have to compute the normal curvatures of X(v, t) for the parameter lines
at the point X(0, 0). Recall that this point generates a helical path along which the
CRPC surface is tangent to a co-axial rotational cylinder (see Fig. 4). The profile curve
X(0, t) and the helical path X(v, 0) are symmetric with respect to the y-axis, on which
X(0, 0) lies. The helical tangent is Xv(0, 0) and profile tangent is Xt (0, 0).

Let κ−
v , κ−

t be the normal curvatures of X−(v, 0), X−(0, t) respectively, forwhich
we find at X−(0, 0),

κ−
v

κ−
t

= (1 + k)s40 + O(s20 ) + 1 − k

(1 − k)s40 + O(s20 ) + 1 + k
.

If we let C → +∞, X−(0, 0) will tend to −∞ along the y−axis. Since we have fixed
the pitch at 1/2, moving with X−(0, 0) to infinity, the surface becomes locally like
a rotational one. The parameter curves X−(v, 0), X−(0, t) are locally like parallel
circle and meridian. So the ratio of principal curvatures can be approximated by
κ−
v /κ−

t . Similarly, the ratio for X+(v, t) can be approximated by

κ+
v

κ+
t

= (1 + k)s′4
0 + O(s′2

0 ) + 1 − k

(1 − k)s′4
0 + O(s′2

0 ) + 1 + k
.

Consider the way how we choose s0 and s′
0: The function h(s) = 2Cs1+k

0
s20+1

, k < 1 is

firstly increasing and then decreasing on [s0, s′
0] where h(s0) = h(s′

0) = 1. It is not
hard to see that C → +∞ implies s0 → 0 and s′

0 → +∞. Thus

κ−
v

κ−
t

→ 1 − k

1 + k
,

κ+
v

κ+
t

→ 1 + k

1 − k
,

showing that we can treat X−(v, t), X+(v, t) as two different types of surfaces and
assign curvature ratios 1−k

1+k and 1+k
1−k , respectively, to them.

The above discussion provides a natural way to label the principal curvatures
(including the case a < 0): For any surface X(v, t;C), suppose we have an unla-
beled principal frame at X(0, 0;C). By increasing the value of C , this point is pushed
to infinity and one of its principal directions continuously drives to the direction of
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Xv(0, 0;C). We label the principal curvature in this direction by κ1 and the other by
κ2. ��
Remark 5 In the case a < 0, we can copy all calculations from X−(v, t) and obtain

κv

κt
= (1 + k)s40 + O(s20 ) + 1 − k

(1 − k)s40 + O(s20 ) + 1 + k
.

However, it immediately follows that limC→+∞ κv

κt
= 1−k

1+k . Hence, all surfaces share
one common ratio, on which we cannot base a classification.

Shapes for negative curvature. In order to classify the case a < 0, we consider the
intersection of the surface and the yz-plane, which we call yz-profile. These profiles
also show the essential distinction in the positively curved case, namely the shorter
(inner) and longer (outer) segments between cusps (Fig. 7). For a < 0, we get essen-
tially three types of shapes, seen in Fig. 8. The figure only shows the essential part of
the profile, which we call the generating profile. The complete yz-profile is obtained
from the generating profile by application of those reflections at the helical axis and
translations parallel to it which correspond to rotation angles v = nπ, n ∈ Z, in the
helical motion. This entire pattern shows a nice transition between the three cases,
supporting the completeness of the classification.

The yz-profile generates the same surface as X(0, t) does. But for different values
of C , the yz-profiles can be classified into three major cases (see Figs. 5 and 8).
The separating case corresponds to the middle image of Fig. 5. It belongs to s0 =√

(k + 1)/(k − 1), or equivalently, since h(s0) = 1,

C = Ck := k(k − 1)
k−1
2

(k + 1)
k+1
2

. (14)

Proposition 9 The elementary yz-profile of a negatively curved helical CRPC surface
can have the following shapes, depending on the value of the constant C. (a) For
C ∈ (0,Ck), the profile can be written as graph y = F(z) of a positive even function
F. (b) For C = Ck, the profile is the graph z = G(y) of an odd function G. (c) For
C > Ck, the profile lies on one side of the z-axis and is symmetric with respect to the
y-axis, on which it has a self-intersection.

Proof For C ∈ (0,Ck), i.e. s0 >

√
k+1
k−1 , g(s) is always positive. As we can see from

Fig. 5 left, the top view of X0(s) lies in the first quadrant. To get the upper half of

the yz-profile, we need to move each point X0(s) =
(
t(s)
2 , g(s),

∫ g′(s)
t(s) ds

)

along

its helical path until it reaches the yz-plane. The corresponding coordinate on the
yz-profile is

⎛

⎝0,

√

t(s)2

4
+ g(s)2,

∫
g′(s)
t(s)

ds + 1

2
tan−1 t(s)

2g(s)

⎞

⎠ .
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Similarly, the point
(

− t(s)
2 , g(s),− ∫ g′(s)

t(s) ds
)

on X1(s) must be moved backwards to

the yz-plane, and the corresponding coordinate on the lower half of the yz-profile is

⎛

⎝0,

√

t(s)2

4
+ g(s)2,−

∫
g′(s)
t(s)

ds − 1

2
tan−1 t(s)

2g(s)

⎞

⎠ .

If we fix X(0, 0) on the y−axis, then this yz-profile is smooth and symmetrical with
respect to the y−axis (Fig. 8 left). Finally, by computing the derivative of the third
coordinate from the upper half, its numerator admits the factorization

C(k2 − 1)s2k−1(s2 + 1)((k − 1)x2 + k + 1)((k − 1)s2 − k − 1),

which is always positive given that s ≥ s0 >

√
k+1
k−1 . Having no tangent orthogonal to

the z-axis, the curve is the graph of a function y = F(z).

For C > Ck i.e. s0 <

√
k+1
k−1 (Fig. 5 right), X(0, 0) lies on the negative part of the

y−axis. Now the points on X0(s) should be moved backwards and the points on X1(s)
should be moved forward. X0(s) contributes half of the yz-profile. If we choose the
branch of cot−1(x) whose range lies in (−π, 0), the expression can be given by

⎛

⎝0,−
√

t(s)2

4
+ g(s)2,

∫
g′(s)
t(s)

ds + 1

2
cot−1 2g(s)

t(s)

⎞

⎠ .

The complete yz-profile is obtained by reflecting the above curve at the y-axis. In this
case, the yz-profile possesses a self-intersection at the y-axis (Fig. 8 right). This is
shown as follows. The highest degree of s in g′(s) and t(s) is the same. This means
g′(s)
t(s) tends to a (positive) constant when s → +∞. Since tan−1 t(s)

2g(s) is bounded,
(∫ g′(s)

t(s) ds − 1
2 tan

−1 t(s)
2g(s)

)

→ +∞when s → +∞. On the other hand, one can show

that the derivative
(∫ g′(s)

t(s) ds − 1
2 tan

−1 t(s)
2g(s)

)′
s

→ −∞ when s → s+
0 . These calcu-

lations guarantee that the curve will cross the y−axis, i.e. possess a self-intersection.

For C = Ck , i.e. s0 =
√

k+1
k−1 (Fig. 5 middle), X(0, 0) coincides with the origin and

the tangent at this point lies on the xz-plane. This implies lim
s→s+0

tan−1 t(s)
2g(s) = π

2 . So

for convenience, we consider the xz-profile instead, which is tangent to X(0, t) at the
origin. Again, X0(s) contributes half part of it, which is

⎛

⎝

√

t(s)2

4
+ g(s)2, 0,

∫
g′(s)
t(s)

ds − 1

2
tan−1 2g(s)

t(s)

⎞

⎠ .

123



Beitr Algebra Geom

Fig. 8 The shapes of CRPC surfaces to a curvature ratio a < 0 (here k = 3) depend on the value of C .
Left: C = 0.01. Center: C = Ck = 3/8. Right: C = 1

The other half from X1(s) is

⎛

⎝−
√

t(s)2

4
+ g(s)2, 0,−

∫
g′(s)
t(s)

ds + 1

2
tan−1 2g(s)

t(s)

⎞

⎠ .

Together they form an odd (smooth) function in the xz-plane (Fig. 8 middle). Clearly,
the yz-profile is congruent to it and obtained by applying the helical motion with an
angle of 90 degrees. ��

Future work

One direction for future research is the determination of all spiral CRPC surfaces, as
extensions of the known spiral minimal surfaces (Wunderlich 1954). This is a natural
question, since CRPC surfaces are invariant under Euclidean similarities and spiral
surfaces are generated by one parameter subgroups of the Euclidean similarity group.
The present approach based on profiles for projection orthogonal to the spiral axis
should be promising, since these profiles also appear in Wunderlich’s spiral minimal
surfaces (Wunderlich 1954). However, the characterizing ODE is much more compli-
cated and thus we leave its solution for future work.

The determination of explicit representations for CRPC surfaces apart from the so
far mentioned ones is a bigger challenge, as it amounts to the solution of a rather
complicated nonlinear partial differential equation. A geometric construction of gen-
eral CRPC surfaces can be based on a Christoffel-type transformation of the Gaussian
spherical image (Jimenez et al. 2020), but it remains openwhether this is a path towards
explicit parameterizations of CRPC surfaces.
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