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a b s t r a c t

Small-scale cut and fold patterns imposed on sheet material enable its morphing into three-
dimensional shapes. This manufacturing paradigm has been receiving much attention in recent
years and poses challenges in both fabrication and computation. It is intimately connected with the
interpretation of patterned sheets as mechanical metamaterials, typically of negative Poisson ratio.
We here present an affirmative solution to a fundamental geometric question, namely the targeted
programming of a shape morph. We use optimization to compute kirigami patterns that realize
a morph between shapes, in particular between a flat sheet and a surface in space. The shapes
involved can be arbitrary; in fact we are able to approximate any mapping between shapes whose
principal distortions do not exceed certain bounds. This amounts to a solution of the so-called inverse
problem for kirigami cut and fold patterns. The methods we employ include a differential–geometric
interpretation of the morph, besides drawing on recent progress in geometric computing

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years there has been growing interest in what we
would like to call geometric materials, namely mechanical meta-
materials capable of shape morphing. One particular way these
can be achieved is via folding flat sheet material [1–6]. Another
route is offered by cut and fold patterns imposed on flat sheets,
dissecting them into small parts connected by hinges, with sub-
sequent actuation causing the morph. Cuts in addition to folds
(kirigami) considerably add to the degrees of freedom that are
available for morphing. It is this idea that is studied in the present
paper — see Fig. 1 for an example. This approach to generating 3D
shapes is particularly valuable in situations where this shape is to
be endowed with technology more easily printed onto a 2D sheet.
A prime example is electronics, where cutting and folding is an
alternative to other ways of manufacturing three-dimensional
circuit carriers like molding [7]. For this reason, folding has been
proposed for pop-up robots on Mars [8].

A typical feature of geometric metamaterials is their auxetic
behaviour [9–11], with expansion under tension being caused by
gaps opening when micro-elements are rotating. Analysis of this
behaviour is the key for treating metamaterials by differential–
geometric methods as we are going to do in this paper.

The cut and fold patterns involved in the geometric materials
we have in mind are repetitive, following a periodic tessellation

I This paper has been recommended for acceptance by Gershon Elber.⇤ Corresponding author.
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of the plane by triangles [12–14], quadrilaterals [15], hexagons
[16,17], or more complex periodic patterns [18]. The modula-
tion of strict periodicity to achieve a morph to a double-curved
shape is called programming shape or programming curvature
[12–15,19,20]. Fig. 2 shows an example of this.

While our geometric considerations mostly refer to metama-
terials composed of rigid elements, auxetics have been made
in many different ways, from the molecular level [21] to laser
cutting elastic sheets [22]. The details of deployment are diverse
and include thermal actuation [23], in-plane expansion to the
geometrically possible maximum [13], and out-of-plane buckling
induced by tension [24]. Further, there is a broad range of shape
morphs achieved by materials of higher elasticity, e.g. flexible
tiles [25], or inflatables with an embedded kirigami pattern [26].
In this paper actuation is mostly steered by the limits of geome-
try: we mostly move from a closed state to a fully open one, or
vice versa. We also investigate bistable metamaterials permitting
a snap-through morph [14,18,27], see e.g. Fig. 6.

Problem statement

A major challenge in this area is to make programming shape
computationally effective. This so-called inverse problem can be
formulated as follows:

Given a shape, can we design a flat cut and fold pattern that after
deployment assumes that shape?

We can ask the same question also for a non-flat initial surface.
A more general question is the following:
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Fig. 1. For a given surface in space, we can design a cut pattern in the plane that deploys continuously to that surface.

Fig. 2. Programming curvature into an almost regular pattern. Here an almost regular open 2D pattern closes to become a surface in space.

If a mapping to a target surface is given, can we design a cut and
fold pattern such that the shape morph defined by that pattern
approximates the given mapping?

This question has already been treated thoroughly for the special
case of conformal mappings [12–14]. The answer in general is
affirmative, within limits. If the principal distortions of map-
pings are within certain boundaries, mappings can be reproduced
by the morph of a cut and fold pattern. We can effectively
compute morphs from a flat state to a target shape in space
(Fig. 1); and likewise for the reverse, namely a morph from a
three-dimensional shape to a flat state (Fig. 2). Existence and
computation of a geometric material tailored to the desired shape
morph is the main contribution of this work.

The solution is based on aligning cut and fold patterns with
the principal stretch directions of mappings between surfaces. We
also believe that the geometric principles at work here may open
up avenues of promising future work on the geometry side.

Contributions

On a technical level, our contributions are the following.
— We show how a cut and fold pattern that effects a desired
shape morph can be computed in a multi-stage process involving
optimization. Since the combinatorics of the mesh layout are part
of the solution, this optimization is very difficult unless an in-
formed proposal yields initial values to start from. That proposal
is based on differential–geometric relations between the desired
morph on the one hand, and local cut and fold patterns on the
other hand.
—We are able to leverage recent progress in the area of kinematic
models of surfaces, which already were successfully employed to
numerically treat isometric mappings [28].
— The shape transformation power of mechanical meta-materials
is demonstrated by means of a universality result on bistable
auxetics. We show that they can mimick deformations between
surfaces which are arbitrary except their principal stretches must
obey certain bounds.

2. Discretizing deformations of continua by kirigami patterns

Our treatment of geometric metamaterials is based on the idea
that their morph approximates the deformation of a continuum.
The material itself is composed of elementary cells to which
geometric primitives are attached. The morph deforms cells but
lets the primitives move as rigid bodies. The shapes of cells and
geometric primitives are modelled after ideal shapes in a periodic
planar arrangement. It is exactly in the deviations from this ideal
shape where curvature is programmed into the pattern.

We start our exposition by describing the ideal shape cor-
responding to a simple case, where four rectangular primitives
of the same size are connected with hinges and are positioned
around a rectangular cell. They form a mechanism moving from
the fully opened state (Fig. 3, left) to the closed state (Fig. 3, right).

2.1. Constant mean stretch deformations

We consider the transformation of cells C1 ! C0 shown by
Fig. 3 as deformation of a continuum. Cells C1, C0 are rectangular
of size w ⇥ w and a ⇥ b, resp. The deformation of a continuum
mentioned here is modelled as a differentiable mapping  from
one surface s(u, v) to another surface s̄(u, v). In each position
(u, v) it is linearized by the linear mapping d (u,v) which maps
partial derivatives onto each other:

d (su) = s̄u, d (sv) = s̄v.

The dependence of d on u, v is not indicated in this notation.
By the singular value decomposition, one finds an orthonormal
basis b1, b2 in the tangent plane of the first surface, an orthonor-
mal basis b̄1, b̄2 in the tangent plane of the second surface, and
nonnegative factors �1, �2 such that

d (b1) = �1b̄1, d (b2) = �2b̄2, where w.l.o.g., �1 � �2 � 0.

These vectors b1, b2 and b̄1, b̄2 indicate the principal stretch di-
rections, while �1, �2 are called principal stretches. This singular
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Fig. 3. This metamaterial has a square basic cell to which four rigidly moving rectangles of size a ⇥ b are attached. The closing movement causes each rectangle to
rotate by 45 degrees and deforms the cell into a rectangular shape. The deformation of cells enjoys constant mean stretch.

value decomposition of d is also commonly used to visualize the
distortions of map projections in cartography. There, one consid-
ers the image of the unit circle under the mapping d . It is an
ellipse called the Tissot indicatrix [29] whose axes are indicated
by vectors b̄1, b̄2 and whose dimensions are given by �1, �2. The
factors �1, �2 are called the principal stretches, see [30] or [31].
The mapping  is conformal, if and only if principal stretches are
equal in every point,

�1(u, v) = �2(u, v), for all, u, v.

In this special case the basis vectors b1, b2 are not unique. Other-
wise they are unique up to multiplication with �1 (of either b1,
or b2, or both).

The motion of an elementary cell as defined by Fig. 3 causes a
cell of size w ⇥ w to change to a cell of size a ⇥ b. Thus, such a
motion approximates a deformation with principal stretches

�1 = a
w

, �2 = b
w

, where w = a + bp
2

.

The sum of principal stretches is independent of the dimensions
of cells, since

�1 + �2 = a
w

+ b
w

=
p
2. (1)

This is significant, not because of potential implications on finite
strains, but because of connections to differential geometry.

Section 3 will show how, by varying the local geometry, but
such that quads are still approximately rectangular, we are able
to program curvature into the pattern and achieve a continuous
morph between two surfaces (Fig. 4). In view of the previous
paragraph, the morph from the open state S1 to the closed state
S0 is a discrete approximation of a deformation where the mean
principal stretch, 1

2 (�1 + �2), is constant.
The idea to employ special deformations to describe morphing

metamaterials is not new. E.g., conformal deformations can be
realized by auxetic linkages modelled after the triangular kagome
lattice if and only if 1 < �1,2 < 2 [12–14]. Also non-triangular,
quad-based patterns have been treated by means of conformal
mappings [20]. However, conformal mappings are not well suited
to model the degrees of freedom inherent in quad-based patterns.
Better results can be achieved when using a class of mappings
where the principal stretches do not have to be equal. We are
going to use ‘‘constant mean stretch’’ deformations to initialize
cut and fold patterns whose elementary cells are modelled after
Fig. 3.

Remarkably, the class of constant mean stretch deformations
occurs also in the differential geometry of soap bubbles. The
mean stretch of the mapping from the surface of the bubble to
the unit sphere via the unit normal vectors is known as mean
curvature. It equals � · �p, with � as surface tension and �p as

pressure difference [32]. To the best of our knowledge, constant
mean stretch mappings between arbitrary surfaces have not yet
been systematically studied from the viewpoint of differential
geometry.

Discrete surfaces composed of rigid pieces were systemati-
cally studied by R. Sauer, cf. the textbook [33]. Unfortunately
there does not seem to exist a comprehensive English language
treatment of kinematic models, even if they are an ongoing topic
of investigation in discrete differential geometry — see e.g. [34]
or [35].

The design principle of Section 2.1 can be applied to different
and more general quad-based geometric metamaterials. One pos-
sible generalization concerns quad-based cut patterns that do not
open fully. Rather, each incision opens to a hole that is roughly
diamond-shaped, with the degree of opening depending on the
location. In this way more general deformations between surfaces
can be simulated. The basic idea of Fig. 3 has to be modified
in obvious ways. We will briefly treat such generalizations in
Section 4.1.

2.2. Bistable quad-based auxetics

The principle of programming curvature can be applied to any
quad-based regular planar pattern. We demonstrate how to treat
a recently proposed bistable metamaterial [18] and show that it
is capable of realizing more arbitrary morphs between 3D shapes
than the constant mean stretch case discussed above.

Consider a rectangular cell of size A⇥B as shown by Fig. 5. It is
dissected into smaller parts by line segments forming the angle �
with the sides of the rectangle. By rotating the dark blue rectangle
by the angle 2� and translating the other parts we obtain a con-
figuration fitting into a larger rectangle of size A0 ⇥ B0. Reflection
and translation of the base cells creates two arrangements of rect-
angles and nonconvex 8-gons that form two stable configurations
of a 2D periodic metamaterial. Snapping from one configuration
to the other causes expansion. The principal stretches are

�1 = A0

A
= 1 + 2

b
A
sin�, �2 = B0

B
= 1 + 2

a
B
sin�. (2)

Given A, B we may choose the angle � and the size a ⇥ b of the
dark blue rectangle arbitrarily, only subject to the condition that
the edges emanating from the blue rectangle always intersect the
‘right’ edges of the cell, preventing the grey and yellow 8-gons
from becoming disconnected. Assuming symmetry, this leads to

a < A cos� � B sin�, b < B cos� � A sin�. (3)

The choice of a, b,�, subject to (3), represents the degrees of free-
dom available for geometric modelling. The actual construction of
bistable auxetic metamaterials requires optimization.
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Fig. 4. A surface kirigami based on the local configuration of Fig. 3 morphs between the fully closed state S0 and the fully open state S1. This morph is a discrete
approximation of a continuous deformation of surfaces. This diagram also shows the area expansion on the y axis.

Fig. 5. Bistable auxetic metamaterial consisting of an arrangement of grey and yellow nonconvex 8-gons and blue rectangles. The pattern is generated by reflection
and translation of a quadrilateral cell. It can snap between two stable states. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. A 2D bistable auxetic metamaterial based on an underlying quad pattern.
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2.3. Differential–geometric considerations

A shape morph according to Section 2.1 between a fully closed
state and a fully open state (see Figs. 2 and 7) discretizes a
mapping between surfaces which has the special property of
constant mean stretch. In addition, the cells are aligned with the
principal stretch directions. Another property, not mentioned so
far, is the following. Since the elementary cells in the fully open
state are near-squares, the collection of cells is a near-conformal
image of the standard square grid. The continuous analogue of
this statement is that the network of principal stretch lines is the
conformal image of the horizontal and vertical lines a 2D domain.
It is entirely unclear under what circumstances this property is
already a consequence of the constant mean stretch property, and
to our knowledge the answer to this question is not known. Our
computations do not depend on an answer to this question, and
they were successful in any case.

A related problem in classical differential geometry is the
question whether the network of principal curvature lines is a
similar conformal image. This is known to be true for the class of
isothermic surfaces, which e.g. contains the surfaces of constant
mean curvature (soap bubbles) already mentioned in Section 2.1
[36].

The bistable case is different: Elementary cells are still aligned
with principal stretch directions, but apart from inequalities (3)
there are no restrictions on the shape of cells. Therefore, as long
as the principal stretches are expressible in terms of a, b, A, B,�
according to Fig. 5, we expect a mapping between surfaces to
be realizable as a bistable auxetic metamaterial. This can be
considered a universality result.

3. Computing geometric metamaterials

The actual computation of the geometric metamaterials de-
scribed above is based on optimization, and leverages recent
progress in geometric computing to handle isometric correspon-
dences [37]. We employ a multi-stage procedure described in
detail below.

• Stage 1 starts with two reference surfaces, given as trian-
gle meshes, and establishes a deformation of the first to
the second which approximates the desired morph of the
metamaterial.

• Stage 2 uses a Levenberg–Marquardt algorithm [38] to op-
timize these so as to have the correct dimensions.

• Stage 3 assigns geometric primitives to cells and performs
another round of optimization. Corresponding primitives in
the closed and the open state must be congruent, which is
enforced as a hard constraint.

3.1. Stage 1: Initializing continuous deformations

The movement of geometric metamaterials as described by
Section 2 approximates a continuous deformation. To find a ma-
terial that matches two given surfaces S and S 0 we start by
finding that deformation, which is a thoroughly studied topic
of Computer Graphics and Geometry Processing. As one of sev-
eral possible alternatives we choose to work with the recently
proposed checkerboard pattern method [37]. The deformation is
represented by a pair of combinatorially equivalent quad meshes
with vertex sets V , V 0 contained in S resp. S 0. Following the
checkerboard paradigm, the material’s basic cells are formed by
one half of the diagonals of faces in this mesh, see Fig. 7.

The constraints we impose on meshes V , V 0 depend on the
particular nature of the geometric metamaterial we wish to gen-
erate. The example of Fig. 3 calls for the correspondence V ! V 0

to enjoy the constant mean stretch property. This is eventually
achieved by the optimization of Stage 2 below, but to initialize
that we first find a pair of meshes V 0

0, V 0
0 in the plane that

trivially have this property. The actual principal stretches of the
mapping V 0

0 ! V 0
0 are defined by the user, subject to Eq. (1).

We then map V 0
0, V

0
0 into surfaces S resp. S 0 in an as-rigid-as-

possible manner [39,40]. This generates meshes V , V 0 that have
still almost orthogonal diagonals and enjoy the desired property
in an approximate way (Fig. 8).

3.2. Stage 2: Optimizing control meshes

The meshes obtained in Stage 1 do not yet enjoy the required
properties and must undergo optimization, letting meshes V , V 0

glide along the reference surfaces S resp. S 0. We illustrate this
procedure first by means of constant mean stretch deformations.
One property to be established is that cells are as rectangular as
possible. It has proved efficient to achieve this by requiring that
each face of V , V 0 has orthogonal diagonals, only half of which
are used for cells [37]. In the notation of Fig. 7, this amounts to
constraints

corth(f ) = (v1 � v3) · (v2 � v0) = 0,

for all faces f = (v0, . . . , v3) and analogous constraints for faces
f 0 = (v0

0, . . . , v0
3) of the target mesh V 0. We further need faces of

V 0 to be approximately square. Corresponding faces f , f 0 should
enjoy constant mean stretch �. Both conditions are expressed in
terms of edge lengths as

csquare(f 0) = kv0
0 � v0

2k2 � kv0
1 � v0

3k2 = 0, (4)
cstretch(f , f 0) = kv1 � v3k + kv0 � v2k

� �(kv0
1 � v0

3k + kv0
0 � v0

2k) = 0, (5)

for all faces f and corresponding faces f 0.
To ensure that meshes V , V 0 remain close to the reference

surfaces S resp. S 0, we employ the points v̄i in S closest to vertex
vi and the normal vector ni there. These data are recomputed in
each round of our iterative optimization procedure, using fine
mesh representations of S, S 0 and the method of kd-trees. The
condition

cprox(vi) = (vi � v̄i) · ni = 0

constrains the movement of vi to a path tangential to S. Analogous
constraints work on V 0. The efficiency of this approach has been
argued by means of Taylor expansions of the surfaces’ squared
distance field [41].

Finally, we impose soft constraints which ensure that the quad
meshes our computations are based on can be interpreted as a
discrete version of a smooth parametrization of a surface. Away
from singularities, a quad mesh can be seen as the image of a
mapping from the square grid Z2 (contained in the u, v domain)
to space. A sequence of vertices in the integer grid which is lying
on a line parallel to either the u axis or the v axis is mapped to
a sequence of vertices on the mesh which represents a discrete
parameter line of a surface. We call these the mesh polylines.
We impose a certain kind of fairness on them be requiring that
for each triple vi, vj, vk of consecutive vertices on such a mesh
polyline, the 2nd difference

cfair(vi, vj, vk) = (vi � vj) � (vj � vk) (6)

is as small as possible.
Constraints csquare and cstretch are specific to the constant mean

stretch case, while the others apply more generally. In any case
we form an objective function as a weighted sum of squares of
all applicable constraints:

Eorth + Egeom + Eprox + Efair,

5
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Fig. 7. ‘‘Control’’ meshes (thin red) govern the movement of a geometric metamaterial whose basic cells (bold, blue) consist of diagonals of the control mesh. The
individual pieces of the geometric metamaterial (orange) in both the closed and open state are derived from the two control meshes. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Control meshes V , V 0 in surfaces S, S 0 as found by optimization stage 1. Stage 2 is to find a constant mean stretch structure. We prepare for this by first
setting up geometrically regular meshes V0, V 0

0 enjoying a correspondence V0 ! V 0
0 with constant mean stretch, and subsequently determining V , V 0 such that

correspondences V0 ! V and V 0
0 ! V 0 are as isometric as possible.

where

Eorth = worth

X

f2F
corth(f )2,

Egeom = wgeom

X

f2F
(csquare(f 0)2 + cstretch(f , f 0)2),

Eprox = wprox

X

v2V
cprox(v)2,

Efair = wfair

X

triples

cfair(vi, vj, vk)2.

Here the face f 0 is seen as a function of the face f , so summation
is still over all faces f 2 F .

The minimization of the target functional, using the coordi-
nates of vertices as variables, is performed by a standard
Levenberg–Marquardt algorithm [38] and yields the control
meshes V , V 0.

The choice of weights worth, wgeom, wprox, wfair is important:
They must, for instance, compensate the different magnitudes of
individual contributions to the target functional which are caused
by the choice of unit length. The soft fairness constraints must
not dominate the other hard constraints, while still ensuring that

mesh polylines can be interpreted as discrete derivatives. In our
academic implementation, the weights are chosen by hand in
each individual example. Two different rules of thumb were used
for the examples shown in this paper, and the fact that both
succeeded indicates that the method is robust w.r.t. a change in
weights. Detailed statistics on performance of optimization and
the choice of weights are given in Section 3.5.

3.3. Stage 3: Optimizing geometric microstructure

In this third stage we derive the individual pieces of the
material’s microstructure (the ‘‘geometric primitives’’) from the
control meshes V , V 0 and apply a final pass of optimization.

We first describe the constant mean stretch materials accord-
ing to Fig. 3. Fig. 9 illustrates the location of vertices uj,u0

j relative
to the control meshes for the constant mean stretch case of
Figs. 3, 4. Stage 2 produces control meshes V , V 0 whose faces
are not exactly rectangular, so in general the rules for defining
vertices ui,u0

i from V , V 0 have to take some deformation into
account. Accuracy is not an issue here, since we are going to
perform further optimization anyway.
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Fig. 9. Deriving the vertices uj,u0
j of a geometric primitive from the control mesh to initialize stage three of optimization. The basic cells are highlighted in red.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Illustration of the modified fairness term (9).

The most important constraint to be achieved is identity of di-
mensions of the individual pieces in the closed state (vertices ui)
and the open state (vertices u0

i). This is expressed by constraints

cisometry(i, j) = kui � ujk2 � ku0
i � u0

jk2 = 0, (7)

where indices i, j run through all pairs of vertices that belong
to the same piece, for all pieces. Vertices belonging to different
pieces that have identical position in the closed state are handled
by a constraint of the form

cmatch(i, j) = kui � ujk2 = 0. (8)

Closeness of vertices to reference surfaces is dealt with as in
Stage 2, as is fairness. For vertices u0

i however, the expression
(6) is not appropriate, since even in the most regular cases, three
consecutive vertices u0

iu0
ju0

k in a mesh polyline will be related by

cfair,s(i, j, k) = (u0
i � u0

j) � s(u0
j � u0

k) = 0, (9)

where s 6= 1 (see Fig. 10). However, with the appropriate value
of s (which depends on the concrete choice of geometric meta-
material), we use cfair,s as a soft fairness constraint on vertices
u0
i . A weighted sum of squares of constraints now forms a target

function that undergoes minimization by a standard Levenberg–
Marquardt method in the same way as described in Stage 2.
Section 3.2 applies (with the obvious substitutions), with isom-
etry constraints being hard constraints, and fairness constraints
being soft.

3.4. Computations in the bistable case

We here briefly describe in which ways the computations in
the bistable case differ.

• Stage 1: The bistable materials of Fig. 5 are capable of rep-
resenting more arbitrary deformations. We could, in theory,
use any of the available methods of Geometry Processing
to find a deformation of the surface S to the surface S 0

that is as rigid as possible up to a scaling factor > 1. In a
second step we compute its principal directions (by singular
value decomposition of its differentials), and use known
techniques to find meshes V , V 0 that align with the cross
field of principal directions in S resp. S 0 [42]. In practice this
procedure runs into difficulties since it is highly likely that
for some pair of corresponding quads we will not be able to
fit a configuration according to Fig. 5 to it.
Rather, we adopt a pragmatic approach and use the idea
of Fig. 8. The difference to the previous case is that the
principal stretches of the mapping V 0

0 ! V 0
0 are computed

with Eq. (2). The parameters a, b, A, B,� needed here are
taken from a single model instance.

• Stage 2: For the bistable case, stage 2 is analogous to what
is described above: the constraint csquare defined by Eq. (4)
does not occur. Constraint cstretch is modified to fit the
stretch factors �1, �2 computed by Eq. (2):

cstretch,1(f , f 0) = kv0 � v2k2 � �21kv0
0 � v0

2k2 = 0,
cstretch,2(f , f 0) = kv1 � v3k2 � �22kv0

1 � v0
3k2 = 0. (10)

• Stage 3: Initializing the final pass of optimization is anal-
ogous but a bit more complex, since we have to map the
rectangular model configuration of Fig. 5 to quadrilaterals
that are rectangular only in an approximate way. This is
done by a standard least-squares approximation, taking care
to match neighbours. As to optimization, we impose isom-
etry constraints between corresponding pieces analogous
to Eq. (7) as hard constraints, we impose proximity to the
reference surface as a soft constraint, and we do not impose
fairness.

3.5. Performance of optimization

We exemplarily show how optimization progresses by means
of a typical example, namely the one of Fig. 14, bottom. Its control
mesh has 2362 vertices, 4614 edges and 2253 faces. Weights
corresponding to soft constraints (proximity to reference and
fairness) were set to wprox = wfair = 0.01, while weights of
hard constraints were set to worth = wgeom = 1. During the
10 iterations we performed, the fairness and closeness energies
behave as shown in Table 1.

Efair successfully acts as a regularizer. It cannot achieve zero
residual (that would only be the case if mesh polylines are
straight). Hard constraints are csquare, cstretch, and corth whose sums

7
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Fig. 11. Example of a quad-based metamaterial where a planar closed state morphs to a maximally open spatial state. The computation according to stages 1–3
involves a constant mean stretch mapping from a planar domain to the given design surface at right.

Fig. 12. Examples of constant-mean-stretch metamaterials exhibiting combinatorial singularities. To model such significant changes in shape, it may be necessary to
apply user-defined cuts.

Fig. 13. For a given surface in space, we can design a cut pattern in the plane deploying continuously to that surface (figures at left). The expansion can also go
the other way — on a given surface we design a cut pattern that causes deployment to a planar domain (figures at right).

Table 1

Iterations 0 1 2 3 4 5 6 7 8 9
104 · Efair 4.9 12.4 10.3 10.2 10.1 10.0 9.5 9.5 9.3 9.2
104 · Eprox 89k 137 0.34 0.075 0.072 0.072 0.071 0.070 0.070 0.069
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Table 2

Iterations 0 1 2 3 4 5 6 7 8 9
104 · Egeom 2100k 26k 37 1.3 1.2 1.1 1.1 1.0 1.0 1.0
104 · Eorth 1020k 16k 42 1.0 1.2 1.2 1.2 1.2 1.1 1.1

Table 3

Iterations 0 1 2 3 4 5 6 7 8 9
104 · Eprox 7.8 1.3 0.20 0.15 0.13 0.11 0.09 0.08 0.06 0.05
104 · Efair 382 31 21 17 15 13 12 11 9.8 9.1
104 · Eisom 2060k 62k 22 21 9.0 5.9 4.4 3.1 2.1 1.3
104 · Ematch 0 0.03 0.006 0.003 0.002 0.002 0.002 0.001 0.001 0.001

Table 4

Iterations 0 1 2 3 4 5 6 7 8 9
104 · Eisom 0.83 8·10-3 3·10-4 2·10-5 2·10-6 7·10-7 3·10-7 2·10-7 1·10-7 7·10-8

104 · Ematch 9·10-4 8·10-8 7·10-9 1·10-9 1·10-10 2·10-11 6·10-12 2·10-12 8·10-13 4·10-13

of squares yield energies Egeom and Eorth. Their values decrease as
shown in Table 2.

The total energy thus was reduced from 321.5 to 0.0011 in the
last stage of iteration for Stage 2 in a total runtime of 1.1 s.

Iteration for Stage 3 is analogous. We have energies Eclose as
in stage 2, while Efair is composed from the fairness constraint of
Eq. (9). The weights for soft proximity and fairness constraints
are set to 0.01. Isometry and matching constraints according to
Eqs. (7) and (8) are seen as hard constraints and are used to build
energies Eisom and Ematch. Those are given weight 1. The behaviour
of these energies over the first 10 iterations is as shown in Table 3.

The runtime was 5.5 s. It can be clearly observed that the
fairness energy does not converge to zero residual. In order to
overcome this deficiency we add another 10 iterations, with the
weights of soft constraints set to 0. They need an additional 1.7 s
of runtime and achieve the values as shown in Table 4.

For other examples in this paper (Figs. 13, 14, 15, and 16)
the weights were chosen as described above. The examples are
scaled so that the average edge length is 1. On the other hand
the examples of Fig. 12 are scaled such that the bounding box
diameter is 1, the weights of hard constraints are set to 1, while
the weights of soft fairness constraints are set to 0.005 and phase
out towards zero as the optimization progresses. We did not
observe that either of these two regimes performs better than the
other one.

4. Results

We performed numerical experiments and actually manufac-
tured several geometric metamaterials to show the capabilities of
the two cases treated in this paper.

4.1. Results of numerical optimization

Stages 1–3 as described above can be directly employed to
compute a morph between a flat state and a three-dimensional
state, see Fig. 11. The procedure still works in the presence of
combinatorial singularities (see Fig. 12), and morphing capabili-
ties are expanded if cuts are applied.

There are no theoretical restrictions as to the direction of the
morph — opening a cut pattern can transform a 2D domain to a
3D surface and also vice versa (Fig. 13).

Shape morphs between a curved and a flat state may be more
relevant for applications, but we also applied the procedure to
mappings from one double-curved surface to another. Fig. 14
shows two examples.

The algorithms laid out in detail in Section 3 can be modified
in some obvious ways. When removing the constraints of prox-
imity to the target surface in our optimization, we can perform
experimental form-finding, and examples like the one of Fig. 15
emerge. Obviously, this result can be unique only up to isometric
deformations, and it is not clear a priori to which of the many
possible isometric solutions the optimization converges. It would
not be difficult to combine our optimization with user-guided
isometries, as recently proposed by [43].

Another modification allows us to generalize the morph be-
tween elementary cells. Fig. 3 describes a motion of rigid el-
ements between a fully closed and a fully open state. When
we allow a variable opening, we are capable of reproducing
more general deformations between surfaces. Stages 1–3 of the
algorithm remain almost unchanged: The initialization is from
general deformations (like in the bistable case), and in order
to allow incomplete opening, one simply disregards the fairness
terms cfair cfair,s. Figs. 1 and 16 show examples.

As to bistable metamaterials, Fig. 17 shows an example which
we initialized via a mapping from a sphere to a target surface.

So far we have treated the rigid constituent elements of geo-
metric metamaterials as two-dimensional objects. This can be the
case only approximately. In fact the two examples of Fig. 18 show
that three-dimensional effects can be quite noticeable and must
not be summarily neglected. For each individual rigid member
Mj our optimization yields an initial position and a final position
which arises from the initial position by applying a rotation
matrix Aj and a translation. If pieces Mj, Mk are connected, their
relative movement is described by the rotation matrix A�1

j Ak or
A�1
k Aj, depending on which piece is the observer. The axis of

either of these two relative rotations indicates the direction of
the hinge that can exist between pieces Mj,Mk. Hinges computed
in this way are visualized by Fig. 19. We return to the topic of
hinges below, in our discussion on fabrication.

4.2. Fabrication

We experimentally confirm the viability of the proposed ge-
ometric metamaterials by building models a person can handle
with their hands — see videos

• https://vimeo.com/524221493/b7d951751c
(corresponding to Fig. 2),

• https://vimeo.com/524221586/a53a1f1064
(corresponding to Fig. 18, top),

• https://vimeo.com/524221545/c6b63f9480
(corresponding to Fig. 18, bottom).

9

https://vimeo.com/524221493/b7d951751c
https://vimeo.com/524221586/a53a1f1064
https://vimeo.com/524221545/c6b63f9480


C. Jiang, F. Rist, H. Wang et al. Computer-Aided Design 143 (2022) 103146

Fig. 14. Here we designed a mechanical metamaterial which morphs a double-curved surface (a paraboloid) to a given target surface. The example at the top is the
surface of the roof of the Islamic Arts exhibition in the Louvre, Paris.

Fig. 15. Form-finding. Here a cut pattern has been drawn on a given surface. When it opens fully, the example at right emerges. The computation uses the procedures
of Section 3, but without the constraint that the result has to be close to a given target surface.

We restricted ourselves to cases where either the closed or the
open state is flat. We employed plastic, metal and rubber (Fig. 20).
In detail, we worked as follows.

• a 5 mm ‘‘Nylon 6’’ (polycaprolactam) sheet was used for the
examples of Figs. 6 and 18. We employed 5-axis milling to
cut it, using a 0.5 mm cylindrical tool.

• ‘‘304 stainless steel’’ of 0.5 mm thickness has been employed
for the model shown by Fig. 1. It was cut by a Q-switched
Yb:YAG Laser.

• We also experimented with acrylonitrile butadiene rubber
(Nitrile rubber), see Fig. 20, right. It was cut by a 200 Watt
CO2 laser.

A shape morph in space engenders a rotating motion between
any two primitives that are connected. In manufacturing, this
hinge is simply realized as a thin piece of material. Its actual
dimensions are crucial for striking a balance between avoiding
fatigue, avoiding stress concentration, and ease of the shape
morph, depending on the application at hand. For sheets of a
certain thickness, e.g. those of Fig. 18, it is important that for any

two primitives connected by a hinge, that hinge is positioned in
the axis of rotation (Fig. 19) Otherwise failure must be expected.
For the models we built, the details are as follows:

• When milling Nylon 6, hinges are produced by a 0.5 mm
radius cylindrical tool, which gives the lowest radius of
curvature; they have a minimum thickness of 0.5 mm. In-
creasing the length by 1 mm makes the model too loose and
already prevents the desired snapping in the bistable cases.

• In the stainless steel example of Fig. 1 hinges have overall
dimensions 0.5 mm ⇥ 0.5 mm ⇥ 0.5 mm. Extra T-shaped
cuts reduce stress concentration.

4.3. Conclusion

We have demonstrated the capabilities of kirigami cut and
fold patterns for shape-morphing metamaterials. The state of
the art in Geometry Processing and mathematical optimization
allows us to realize both continuous and snap-like deformations
between shapes. It is noteworthy that these deformations are not
limited by the shapes themselves (which can be arbitrary) but by

10
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Fig. 16. These examples show the capabilities of quad-based cut patterns that are similar to the constant-mean-stretch case, but exhibit a variable degree of expansion
depending on the location.

Fig. 17. A hypothetical bistable material that snaps between two surfaces.

their maximum and minimum principal stretches. In particular
our method enables the programming of curvature into almost-
regular flat patterns. Our method is based on mappings between
surfaces (shape morphs). In the process of optimization, this
mapping emerges, and elementary material cells align with its
principal stretch directions.

A limitation of our work is the need to find a deforma-
tion whose principal stretches lie between 1 and the allowable
maximum. In our implementation we did not make full use of
previous work, e.g. [39,44].

Future work includes a thorough differential–geometric anal-
ysis of the questions mentioned in Section 2.3. On the practical
side, it would not be difficult to implement a more explicit rela-
tionship between mappings on the one hand, and metamaterials
on the other hand. This would require remeshing along principal
stretch directions and is treated e.g. by [45]. Future work also in-
cludes extending the capabilities of our limited implementation,
e.g. regarding mappings between surfaces which respect their
boundaries.
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Fig. 18. These bistable geometric materials snap between a flat and a spatial state, demonstrating that the curvature programmed into a pattern might not be visible
to the naked eye. The example on top has positive curvature, the example at the bottom enjoys negative curvature. The actual manufacturing from a flat sheet has
to take the spatial rigid body motion of geometric primitives into account: During the shape morph, each primitive is rotating against its neighbours, and the thin
hinge holding two individual pieces together must be placed along a correctly computed axis of rotation (cf. Fig. 19).

Fig. 19. The axes of rotation between connected primitives occurring in a shape morph are here highlighted in this rendering, which corresponds to Fig. 18, top.

Fig. 20. We experimented with materials allowing the manufacturing of geometric metamaterials. Besides Nylon 6, which was used for the examples of Figs. 6 and
18, we employ stainless steel for the example at left (see also Fig. 1). Nitrile rubber, here sitting on a PU foam mold, was used for the example at right.
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