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a b s t r a c t

Fabrication and assembly of freeform shells can be simplified significantly when controlling the
curvature of structural elements during the design phase. This approach has produced fundamental
insights to bending-active construction, using the elastic property of elements to form efficient load-
bearing structures. This paper is focused on gridshells that are built from straight and flat slats.
The slats are combined in two orientations, tangential and normal to the design surface, to create
robust and versatile triangulated grids. For this purpose, we generate hybrid webs of asymptotic and
geodesic paths on freeform surfaces. The research combines geometric computing with architectural
building practice. We present a computational workflow for the design and interactive modification
of hybrid asymptotic geodesic webs. At its core are discrete models that are based on concepts of
differential geometry and allow to compute constrained structures within an optimization framework.
The resulting webs are tested for architectural applications. We derive a strategy for the elastic erection
process, in which geodesic lamellas are used as a guide and bracing of the spatial structure. Two
architectural scenarios, a timber roof and a steel facade are presented. Their feasibility for construction
is verified through prototypical joints and physical models. The research introduces a new class of
networks and related surfaces and offers insights into the practical challenges of freeform construction
from elastic slats.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Computational tools allow to embed parameters of fabrica-
tion and construction in the design process. This has proven a
powerful strategy to design freeform shell structures [1]. Their
double curvature offers high structural efficiency with minimal
use of material [2], but at the same time creates a high geometric
complexity of beams, joints and panels [3]. By implementing
geometric constraints, these curved elements can be simplified
significantly, creating new possibilities for construction-aware
design [4,5].

One strategy to simplify the fabrication of doubly curved struc-
tures is to deform elements into the design shape while main-
taining their structural integrity. This strategy has been used in
practice to construct elastic gridshells, in which straight elastic
rods are assembled on the ground into a flat grid, and then
pushed upward and fixed with supports and diagonal bracing to
form a highly efficient doubly curved gridshell [6]. This concept
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has further been developed for thinner and wider slats. The slen-
der laths are less likely to break when twisted and bent around
their weak axis, but allow for their strong axis to remain straight
and carry external loads.

There is beautiful accordance between the bending of elastic
rods in a gridshell and the curvature of curves on a surface in
the field of differential geometry [7]. This computational problem
becomes more constrained when restricting one axis of cur-
vature. In geometric terms, such lamella grids can be divided
into geodesic networks (see Fig. 1), exhibiting no geodesic cur-
vature, and asymptotic networks (Fig. 2) with vanishing normal
curvature. Both networks offer distinct and partly contrary geo-
metric and structural properties, but yield a large range of design
solutions.

We are looking at the combination of both geodesic and asymp-
totic curves, to design triangulated doubly curved gridshells from
exclusively straight and flat slats. Such asymptotic and geodesic
(AG) webs profit from a reciprocal stiffness of lying (tangential)
and standing (normal) lamellas that are woven together to cre-
ate a rigid triangular grid. While the asymptotic lamellas offer
high structural resilience against normal loads, the geodesic slats
offer in-plane stiffness and can be used as the substructure for
developable panels.
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Fig. 1. Timber Gridshells using geodesic planks. (A) The ribbed Gridshell in Bad Dürrheim was built with a primary grid along the principal curvature lines and a
diagonal cover of geodesic planks. (B) The Expo Hannover Gridshell (by Natterer & Herzog) combines laminated geodesic ribs with a diagonal geodesic substructure.
(C) The deployable geodesic Almond Gridshell (by Soriano) was designed to allow a flat assembly and kinetic erection process.

Fig. 2. Gridshells using asymptotic networks. (A,B) The first asymptotic timber
prototype was developed at the TUM in 2016, using double lamellas of laminated
poplar and square timber studs. (C,D) In 2017, the Inside/Out Pavilion was built
out of stainless steel lamellas, with repetitive 90-degree joints, and was braced
with diagonal pre-stressed cables.

1.1. Prior work in geometry and geometric computing

Basic ideas underlying the present research have already been
outlined by Finsterwalder at the end of the 19th century [8]. In his
essay on the mechanical relationships of surface deformation, Fin-
sterwalder describes the geometric properties of geodesic webs
as well as asymptotic networks, and their impact on the design
freedom of surfaces. This paper is an early and influential contri-
bution towards discrete differential geometry and also contains
a wealth of ideas that are now highly relevant for research in
computational design and fabrication.

Geometry of webs. From a geometric perspective, the core
topic of the present paper are webs of special surface curves,
in particular geodesic or asymptotic curves. For the geometry

of webs in general, we refer to the monograph by Blaschke
and Bol [9]. We are mostly interested in triangular webs (called
hexagonal in the geometry literature on webs). These consist of
three families of curves on a surface, topologically equivalent to
part of a regular triangular mesh in the plane. More precisely,
there is a parameterization x(u, v), where the three families of
web curves are described by constant u, constant v and constant
u + v, respectively. We also address quadrilateral webs which
also contain the curves to constant u � v. To fix the notation,
we call two families of curves a curve net, if there is a regular
parameterization where these curves are the parameter lines u =
const and v = const .

In geometry, these curve families are considered as dense, but
also discrete webs have been studied. There, one only picks iso-
lines of u, v, u+ v (possibly also u� v), which are integer values.
These structures are the most interesting ones for our application.

While we are not aware of research on webs containing
asymptotic curves, there are results on webs of geodesics. In
the plane, these are webs of straight lines. Graf and Sauer [10]
have shown that a triangular web of straight lines in the plane is
formed by the tangents of an algebraic curve of class 3. The sim-
plest is the obvious case formed by three pencils of parallel lines.
There are also studies of triangular webs of geodesics on surfaces.
R. Sauer [11] studied them with a discrete model, very much in
the spirit of our computational approach to webs, but ours also
contain asymptotic curves. He also presented explicit examples
on rotational surfaces, which are not just the trivial rotational
symmetric arrangements, and examples on spiral surfaces. The
characterizing partial differential equation for geodesic webs is
found in [12], but its explicit solution appears to be difficult.
Clearly, geodesic webs exist on all surfaces of constant Gaussian
curvature, since these surfaces can be mapped to the plane so
that all their geodesics get mapped to straight lines [10,13].

We will also encounter a relation of our work to conjugate
nets of geodesics, studied first by A. Voss [14]. These Voss nets
are reciprocal parallel to asymptotic nets on surfaces of constant
Gaussian curvature [15]. They possess elegant and remarkable
discrete models in form of quad meshes with planar faces that
are mechanisms with rigid faces and hinges in the edges [15–17].
Let us also mention here orthogonal nets of geodesics, which in
the smooth setting characterize developable surfaces. Recently,
Rabinovich et al. [18,19] demonstrated the use of discrete models
of such nets for geometric design with developable surfaces.

Computational design and fabrication. Computational design of
webs formed by geodesics and/or planar curves has been the topic
of contributions by Pottmann et al. [20] and Deng et al. [21].
Geodesic webs also appear in form of weaving patterns that
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generalize the traditional craft of basket weaving to more com-
plex freeform shapes [22–24]. Working with initially straight
ribbons limits the shape space, and thus recent work extended
this weaving technique to curved ribbons [25,26].

We also mention research on grids of elastic rods that form
deployable structures. There, an initially flat arrangement can be
turned into a curved shape. Motivated by research of Soriano
et al. [27], Pillwein et al. [28,29] compute and design elastic
geodesic grishells, formed by an originally flat arrangements of
straight planks. They even provide solutions to the inverse prob-
lem of approximating a given shape with such a structure. A
similar principle is pursued by the X-shells of Panetta et al. [30],
which are not confined to straight rods in the planar state. These
structures are more general than the elastic geodesic gridshells,
but apparently so far this increased flexibility has not led to a
solution of the inverse problem.

Finally, we address the evolution of the present research
within architectural geometry and its impact on geometric re-
search. Support structures from single-curved strip-like elements
have been addressed by Tang et al. [31]. The practically more
interesting case of structures from originally straight lamellas,
as provided by asymptotic gridshells, has been the topic of a
geometric and computational study by Schling et al. [32]. There,
the use of flat circular lamellas of constant radius has already
been addressed. It gave rise to a systematic study of so-called
principal symmetric meshes, a new type of discrete surface pa-
rameterizations [33]. Asymptotic gridshells with a constant node
angle represent models of negatively curved surfaces with a con-
stant ratio of principal curvature (CRPC surfaces). They motivated
research on CRPC surfaces, especially discrete models [34,35],
where remarkably certain principal symmetric meshes have been
the key to represent those with positive Gaussian curvature.

1.2. Architectural precedences

These insights in geometry and computing have had influence
on architectural design and construction. There are three specific
curvature networks, principal curvature lines, geodesic curves
and asymptotic curves, which omit a curvature or torsion (see
Section 2) and thus allow to simplify the fabrication of elements,
beams or panels. Principal curvature lines are well suited for dou-
bly curved facade design. A discrete principal curvature mesh
offers the use of torsion-free nodes and allows for paneling with
planar quadrilateral panels or developable strips [1,36,37]. In the
Brine Bath in Bad Dürrheim, the primary structure is designed
roughly along the principal curvature paths [38]. Additionally, a
layer of densely packed slender slats is used as diagonally brac-
ing, following geodesic curves. Even though the two curvature
paths are used independently and do not create a continuous
web, this example shows beautifully the potential to create hy-
brid networks for both geometric and structural benefits (see
Fig. 1(A)).

Geodesic gridshells. Any straight strip of material, that is pushed
flat onto a curved surface will naturally follow a geodesic curve
[20]. Julius Natterer [39] has taken advantage of this principle to
prefabricate glue-laminated ribbed shells, from layers of slender
timber slats, like the Hannover Expo Roof (see Fig. 1(B)). The lay-
ering is necessary to create higher out-of-plane stiffness against
external loads, as a single slat would easily buckle. Another thin
and dense layer of diagonal slats is used to brace the quadrilateral
grid and support the translucent membrane above [40].

Recently, computational developments have pushed experi-
mental research on deployable geodesic gridshells utilizing the
simple stacking of slats, pin connections, and easy elastic defor-
mation (see Fig. 1(C)) [41,42]. Soriano et al. [27] have created a
method to design specific geodesic nets that can be assembled
flat and deformed into double curvature .

Fig. 3. Asymptotic networks as façade and transformable structure. (A,B) The
asymptotic building envelope prototype was built in 2020, to investigate the
application as facade substructure. (C,D): The kinetic umbrella is a transformable
structure using GRP lamellas and was completed in 2021.

Asymptotic gridshells. Designing asymptotic grids is less in-
tuitive than geodesics. The curve is generated digitally, using a
bespoke solver which step by step traces the direction of zero
normal curvature on the design surface [43]. This algorithm has
been embedded in the PluginBowerbird [44,45] for Rhinoceros3D.
The workflow of designing a network is tedious, as each curve
can only be initiated by a single starting point, and the user can
only control the path by changing the curvature of the design
surface. To generate a homogeneous grid, each path has to be po-
sitioned individually in correspondence to the principal curvature
directions [4].

The architectural research on asymptotic grids is quite recent.
The first prototype (see Fig. 2(A)) was constructed in timber in
2016 [32]. The lamellas were assembled on two levels to allow
for uninterrupted profiles of 60 x 4 mm poplar plywood. Each
lamella was built with two slats to create a concentric connec-
tion with square timber studs and increase the lateral stiffness
(see Fig. 2(B)). A year later, a steel gridshell with approx. 9 m
span was constructed at the Technical University in Munich (see
Fig. 2(C)). Similar to the timber prototype, the steel joint was built
with double lamellas to allow concentric joints and increase the
resistance against buckling. The steel, however, was notched and
assembled in a single layer and additionally braced using steel
cables (see Fig. 2(D)).

This construction method has recently been tested for curtain
wall applications [46]. The 2.4 ⇥ 2.4 m asymptotic building en-
velope (see Fig. 3(A)) proposes a slender joint with rubber inlays
that improved prefabrication and buckling behavior. A proof of
concept showed how panels can be bent onto the asymptotic
structure along the principal curvature directions. While this
strategy ensures that all panels are perfectly developable, both
panels and flat press-strips do not follow geodesic directions and
have to be fabricated with individual geodesic curvature (see
Fig. 3(B)).
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Fig. 4. Overview of the possible 3- and 4-webs combining asymptotic (A, blue) and geodesic (G, red) lamellas. Partial webs may extend the geodesic network onto
surface regions of positive curvature. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In contrast to geodesics, most asymptotic gridshells can nat-
urally be assembled flat. The deformation from flat to curved
shape occurs along a compliant mechanism, due to scissor joints
and restricted bending of lamellas [47]. This makes the erection
process easy with no need for additional formwork. Schikore
et al. [47] take advantage of this property to design transformable
roof structures, and control their kinetic behavior. The Kinetic
Umbrella (see Fig. 3(C)) was constructed in 2021 from single
8 x 80 mm glass-fiber reinforced plastic (GRP) rods connected
by eccentric aluminum joints (see Fig. 3(D)). The structure trans-
forms from a 6 m tall cylinder to a wide funnel shape of approx.
8 m diameter.

The constructive development of geodesic and asymptotic
structures have produced various solutions in timber, steel and
glass-fiber. The dominant mode of failure of these structures is
local buckling due to compression, or lateral–torsional buckling
due to bending of the slender lamellas [46]. Strategies to tackle
this issue focused on layering or coupling of lamellas. So far,
the hybrid use of geodesic and asymptotic lamellas to create
reciprocal stiffness has not been investigated. Geodesics have
further proven valuable not only as structural grid, but also as
a means to cover a ribbed shell with parallel straight slats. This
potential has not been applied to asymptotic structures. Here, we
see a specific potential of creating straight developable panels and
straight pressure-strips.

1.3. Overview and contributions

We are interested in combining asymptotic (A, blue) and
geodesic (G, red) curves in structural networks (see Fig. 4). Curves
which are asymptotic and geodesic at the same time, must be
straight. We do not further study structures containing them,
since their shapes are restricted to ruled surfaces. Far more
versatile are AG-nets, in which three or four families of curves
are combined to meet in the same intersection points. AGG-webs
make use of only one asymptotic family and create triangulations
by adding two geodesic families. AAG-webs combine two families
of asymptotic curves with a single family of geodesics. A 4-web
AGAG of two families of asymptotic curves and two families of
geodesics offers higher density, but is strongly restricted in its
design freedom. These combinations of webs can be extended
to partial webs, which allow to extend the design surface into

positive curvature for dome-like construction using only geodesic
lamellas.

This publication introduces a novel computational method to
design asymptotic-geodesic webs, and offers architectural exper-
iments and scenarios for their construction as elastic gridshells.

Section 2 briefly describes the required concepts from dif-
ferential geometry that are underlying our mathematical model.
In particular, we discuss the special webs whose design and
fabrication is our main target. Section 3 discusses the discretiza-
tion of the geometric structures under consideration. This is the
basis of the numerical optimization algorithm that forms the core
of the computational design tool. We also go beyond a purely
discrete model and briefly address how to obtain smooth curved
elements. It is used to create the developable strips and unroll
them to the plane. Finally, a design workflow is established to
link this optimization to Rhino-Grasshopper and allow archi-
tects to engage and design with this novel tool using specific
controls such as boundary constraints, fairness and proximity.
Section 4 presents the architectural implementation for AAG-
webs. Physical experiments investigate the assembly and erection
process with focus on the positioning and fixing of geodesics.
Two architectural scenarios are designed for timber and steel to
investigate the constructive benefits of combining tangential and
normal lamellas to increase structural stiffness and create smooth
facades from developable strips. We discuss the challenges of
construction, erection, tolerance and performance. Section 5 con-
cludes our findings in the computational workflow, design and
construction and highlights future areas of investigation.

2. Geometric fundamentals

In order to make this research accessible for computational
designers, architects and engineers, we recall here some basic
concepts of elementary differential geometry. This is important to
understand the subsequently presented computational approach
and its implementation. For more details, see e.g. [48,49].

2.1. Frenet frame, Darboux frame and curvatures

The Frenet frame is an orthonormal frame, attached to a curve
c. Let the curve be given in an arc length parameterization c(s)
and primes denote derivatives with respect to s. Then the Frenet
frame is formed by the unit tangent vector e1 = t = c0, the
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Fig. 5. Left: The Darboux vector d in the rectifying plane of the Frenet frame
attached to a space curve c. Right: The Darboux vectors at all curve points
define the rulings of the rectifying developable surface D through c. Bottom: In
the planar development of D, the curve c lies in a straight line.

Fig. 6. The Darboux frame depicting the three ‘‘curvatures’’ ⌧g , n, g of a curve
on a surface.

principal normal vector e2 = c00/kc00k and the binormal vector
e3 = e1 ⇥e2. Vectors e1, e2 span the osculating plane of the curve.
The derivatives of the frame vectors with respect to s satisfy the
Frenet equations, which may be written in the form

e0
i = d ⇥ ei, i = 1, 2, 3. (1)

Here, d = ⌧e1 + e3 is the angular velocity vector of the
frame’s motion, also known as Darboux vector for this frame. Its
coordinates with respect to the Frenet frame exhibit the curvature
 and torsion ⌧ of the curve (see Fig. 5).

Let us now consider a curve c(s) which lies on a surface S.
Then, the Darboux frame (t(s),u(s),n(s)) of c with respect to S is
formed by the unit tangent vector t = e1, unit surface normal
vector n and unit side vector u = n ⇥ t (see Fig. 6). Their
derivatives satisfy the equations

t0 = r⇥ t, u0 = r⇥u, n0 = r⇥n, with r = ⌧g t�nu+gn. (2)

Now we have denoted the angular velocity vector of the frame
motion by r. It is also called Darboux vector, but here with respect
to the Darboux frame. Its representation with respect to the
Darboux frame exhibits the already encountered invariants of a
curve on a surface, namely geodesic torsion ⌧g , normal curvature
n and geodesic curvature g . Since r decomposes into rotations
about the frame vectors t, u, and n with angular velocities ⌧g , �n
and g , respectively, we have a kinematic interpretation of these
quantities by the instantaneous rotations of the Darboux frame
about its axes, indicated in Fig. 6.

Because of

c00 = t0 = r ⇥ t = nn + gu,

n and g are just the projections of the curvature vector c00 onto
n and u, respectively, implying 2 = 2

g + 2
n .

Let us repeat the meaning of vanishing g or n at all points of
a curve, since it plays a fundamental role in the present context.

• g = 0 at all points characterizes a geodesic curve c on S. It
is, at least locally, a shortest path on S. The curvature vector

c00 = nn of c is orthogonal to the surface. In other words,
the principal normal e2 agrees with the surface normal n;
the osculating plane is orthogonal to the tangent plane.
Darboux frame and Frenet frame are rotated against each
other by a right angle: e2 = n, e3 = �u. This implies n = 
and ⌧g = ⌧ .

• A curve c with n = 0 at all points is called an asymptotic
curve. Each tangent of c is an asymptotic direction of S,
i.e. one with vanishing normal curvature. Asymptotic direc-
tions exist only in areas of S where the Gaussian curvature
K is not positive. Now we have c00 = gu, so that e2 = u
and thus e3 = n. Darboux frame and Frenet frame agree,
the osculating plane of the asymptotic curve c agrees with
the tangent plane of S. Comparing the expressions of the
Darboux vectors d and r, we find g =  and ⌧g = ⌧ .

Let us remark that normal curvature and geodesic torsion of a
curve c at a surface point p 2 S depend on the angle between the
curve tangent t against the principal curvature directions t1, t2
and on the corresponding principal curvatures 1, 2. Recall that
t1, t2 are orthogonal tangent directions of S at p. If � is the angle
of t against t1, we have

n = 1 cos2 � + 2 sin2 �, ⌧g = 1
2
(2 � 1) sin 2�. (3)

This shows that 1, 2 are the normal curvatures to principal
directions t1, t2 and the extreme values of n. Moreover, n = 0 is
not possible for K = 12 > 0. We also see that geodesic torsion
vanishes for principal directions, so that a curve with ⌧g = 0 at
all points is a principal curvature line. Geodesic torsion ⌧g attains
its extreme values ±(2 � 1)/2 for � = ±⇡/4, i.e., the bisecting
directions of the principal directions.

Note that geodesic and normal curvature, as well as geodesic
torsion are defined for a curve with respect to a surface. If we
keep the curve, but change the surface, these values will in
general change.

2.2. Bending a straight strip and attaching it to a surface

In the following we have to consider two surfaces, namely the
given reference surface S and the surface formed by the bent slat.
The latter surface is formed by bending an originally flat strip
of material. For the materials and fabrication process underlying
our application, it is sufficient to neglect any stretching of the
material during deformation, at least for geometric modeling. This
means that the deformation is isometric and keeps the length
of curves, angles between curves, geodesic curvature of curves
and the Gaussian curvature K = 12 of the surface unchanged.
We build our structures from flat slats with straight boundaries.
Bending such a strip, one obtains a developable surface strip D
(K = 0). It has only a one-parameter family of tangent planes,
which we study now. The long boundaries and central curve c are
parallel geodesics on D. Hence, at each point c(s) of c, the tangent
plane T (s) of D is orthogonal to the osculating plane of c(s). Thus
T (s) is the so-called rectifying plane, spanned by tangent e1(s) and
binormal e3(s). D is therefore called rectifying developable of c. It is
the only developable surface D one can pass through a curve c so
that after unrolling D into the plane the curve becomes a straight
line (see Fig. 5).

Each tangent plane T (s) of the rectifying developable D touches
D along a straight line, called a ruling. It can be computed by
intersecting T (s) : (x � c(s)) · e2(s) = 0 with the derivative plane
T 0(s) : (x� c(s)) · e0

2(s) = 0. The resulting ruling R(s) has direction
vector rD = e2 ⇥ e0

2, for which we find

rD = ⌧e1 + e3 = d, (4)
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so that it agrees with the Darboux vector d of c’s Frenet frame.
For our application, it is problematic if the ruling is too close to
the central curve. Hence, one needs to avoid a too small curvature
 .

We are interested in placing D either tangential or normal to
a given reference surface S with c ⇢ S:

• Tangential placement of D implies that c’s rectifying planes
are tangential to S. Hence c’s osculating planes are normal
to S and c is a geodesic curve on S. We speak of a geodesic
strip tangent to S. In the Darboux frame of c w.r.t. S, its
rulings have direction vectors rD = ⌧ge1 � nu. Hence, for
our practical purposes, the strip should not get too close to
an asymptotic direction (where n = 0).

• If we place the strip orthogonal to S along c, the tangent
planes of D (rectifying planes of c) are orthogonal to the
tangent planes of S. Hence, the osculating planes of c are
tangent to S and c is an asymptotic curve of S. Now we can
set e2 = u, e3 = n and obtain as ruling vector of D in the
Darboux frame notation rD = ⌧ge1 + gn. The ruling agrees
with the surface normal only for ⌧g = 0, characterizing a
principal direction. However, we have an asymptotic curve,
which can be principal only if it is a straight line with a
constant tangent plane along it, for example a ruling on a
developable surface. This is not the case in our application.
Since we want a ruling not too close to the tangent, we need
sufficiently high g =  .

2.3. Special surface parameterizations and webs

The main structures of interest are webs of geodesic (G) and
asymptotic (A) curves on a surface S (see Fig. 4). A curve c ⇢ S
which is geodesic and asymptotic is a straight line. This case is
not of interest here, since one cannot place a developable strip
tangential or orthogonal to S along a straight line c ⇢ S, unless
the tangent planes of S are constant along c. That would be true
for rulings c of a developable surface S. However, we aim at
modeling double curved surfaces S.

We start with a parametric representation s(u, v) of S and
extend the net of isoparameter curves u = const . and v = const
by diagonal curves u+ v = const . and/or u� v = const . to a web.
Our main interest is on 3-webs of type (AAG) and (AGG):

• The construction of an AAG-web will start from a surface pa-
rameterization in which both isoparameter lines are asymp-
totic curves. Such an asymptotic parameterization s(u, v),
or shortly called A-net, requires the osculating planes of
isoparameter curves being tangential, i.e.

suu · n = 0, svv · n = 0, (5)

where lower indices u, v indicate partial derivatives with re-
spect to u and v, respectively. There is not much freedom in
an asymptotic parameterization of a given negatively curved
surface S. Any two are related by admissible reparameter-
izations of the form u = f (ū), v = g(v̄). This does not
leave sufficient freedom to achieve that diagonal curves are
geodesics. Hence, AAG-webs exist on special surfaces only.
Simple surfaces which carry an AAG-web are all negatively
curved rotational surfaces. Here the web is formed by the
two families of asymptotic curves and the profiles in planes
through the rotation axis. This follows by symmetry with
respect to each profile plane.

• AGG-webs possess slightly more degrees of freedom, since
the geodesics form a 2-parameter family of curves on a
surface, while the asymptotic curves are determined. De-
spite that, there is still a shape restriction, which can al-
ready be guessed from the fact that GGG-webs restrict the

shapes, whose classification is missing, as is the case for sur-
faces which carry an AGG-web. Simple examples of surfaces
with AGG-webs are certain developable surfaces obtained
as follows: Select one family of lines in a 3-web of straight
lines in the plane, using the explicit representation of Graf
and Sauer [10], and map them by isometric deformation to
the rulings of a developable surface S. The rulings are the
asymptotic curves of S and the isometry maps the other two
line families in the planar web to geodesics on S.

A characterization and classification of surfaces which carry
AAG or AGG-webs appears to be difficult and is beyond the scope
of the present paper.

3. Computation based on discretization and optimization

Having outlined the basic facts from geometry, we are now
able to turn to the computational design of hybrid asymptotic
geodesic gridshells. We use concepts from discrete differential
geometry [16], modeling with freeform curves and numerical
optimization. We first provide an overview of the computational
pipeline and then elaborate on the individual steps in detail.

3.1. Overview of the computational approach

The webs we have discussed so far are based on dense families
of smooth curves on a smooth surface. We actually need only a
discrete family of curves on an underlying smooth surface. Since
the knowledge on the specific webs in the smooth setting is very
limited, we use a discrete approach. We first compute a coarse
discrete version of a targeted web. For a 3-web, this is a triangle
mesh with regular combinatorics in which the three families
of main polylines have the required meaning (asymptotic or
geodesic) in the sense of discrete differential geometry (Fig. 7(A)).
This discrete web is then refined via subdivision (Fig. 7(B)) and
optimized so that only the original, but now refined polylines
have the required properties (Fig. 7(C)). Finally these polylines
are approximated by C3-spline curves whose segments are Bézier
curves of degree 5. Here, we also compute the rulings of associ-
ated developable strips. The final result is a web of developable
surface strips with straight development, which are tangent to
the underlying surface (represented as a quad mesh) along the
geodesic curves in the web and orthogonal along the asymptotic
curves in the web (Fig. 7(D)).

3.2. Discrete nets and webs of asymptotic and geodesic curves

The discrete version of a curve is a polyline with vertices vi.
Its edges vivi+1 are discrete tangents and the planes spanned
by three consecutive vertices vi�1vivi+1 are discrete osculating
planes [15].

A discrete net is defined by a map f : Z2 ! R3 and thus a
quad mesh with regular combinatorics. The discrete parameter
lines through (u, v) 2 Z2 are polylines f (Z, v) and f (u, Z), which
we call u-lines and v-lines like in the smooth case. Our interest is
in those discrete nets in which both families of discrete parameter
lines are asymptotic or geodesic.

A discrete asymptotic parameterization of a surface is a quad
mesh in which at each vertex the discrete osculating planes of
the discrete u-line and of the discrete v-line agree. Hence, it is
a quad mesh with planar vertex stars, i.e., a quad mesh where a
vertex v and its four connected neighbors vi, i = 1, . . . , 4 lie
in a plane (Fig. 8(A)). These A-nets are well studied in discrete
differential geometry [16] and share many properties with their
smooth counterparts. The constraint of planar vertex stars is
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Fig. 7. Overview of the computational approach. (A) coarse web (here, an AAG-web; A=blue, G=red). (B) refined web after applying subdivision twice. (C) relevant
polylines on the refined mesh are optimized so that they possess the required properties (asymptotic or geodesic). (D) AAG network from three families of developable
strips. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Constraints at vertex stars for various types of nets and webs. (A) An
A-net has planar vertex stars; the five vertices v, vi(i = 1, . . . , 4) are coplanar.
(B) Equal opposite angles at a vertex of a G-net. The vertex normal n bisects
edge vectors g1, g3 and g2, g4. (C) An AAG-web is obtained from an A-net by
adding a family of diagonal polylines so that they are discrete geodesic curves.
This requires the vertex normal n to be coplanar with diagonals va � v and
vc �v. (D) An AGG-web is obtained from a G-net by adding a family of diagonal
polylines so that they are discrete asymptotic curves. This requires the vertex
normal n to be orthogonal to edges va � v and vc � v.

the discrete version of Eq. (5). We formulate it with help of an
auxiliary variable n, representing the unit normal vector at v, as

n · (vi � v) = 0, i = 1, . . . , 4. (6)
knk2 = 1. (7)

The normalization of n is important, since otherwise during opti-
mization n can converge to the zero vector and thus fulfill Eq. (6)
without expressing coplanarity.

The construction of AGG-webs is based on discrete geodesic
nets (G-nets) in which both families of discrete parameter lines
are geodesics. Such G-nets appeared at various places in the
literature, probably for the first time in a paper by W. Wunder-
lich [17], and most recently in work by Rabinovich et al. [18,19]
on discrete developable surfaces, modeled via orthogonal G-nets.
The constraint for G-nets is also at vertices and requires that
opposite angles in each vertex star agree (see Fig. 8(B)). With
normalized direction vectors of the edges emanating from vertex
v,

gi = (vi � v)/kvi � vk, i = 1, . . . , 4, (8)

this amounts to the condition

g1 · g2 = g3 · g4, g2 · g3 = g4 · g1. (9)

Such a vertex star has the property that the discrete osculating
planes of parameter lines intersect in a line which deserves to be
called a discrete normal at the vertex: For both discrete isopa-
rameter lines meeting there it is a bisecting line of the two edges
through v. In other words, the rotation by 180 degrees about that
normal maps the vertex star in itself. Thus, the computation of
a (non-normalized) normal vector n̄ at v can be based on one of
the following equations,

n̄ = g1 + g3 or n̄ = g2 + g4. (10)

There is an alternative way to compute a vertex normal: The two
geodesic polylines through v have normals m1 and m2 of their
discrete osculating planes, which must be orthogonal to n,
n · m1 = 0, n · m2 = 0, m1 = (v1 � v) ⇥ (v3 � v),
m2 = (v2 � v) ⇥ (v4 � v).

(11)

Discrete AGG-webs. We start with a geodesic net, insert one fam-
ily of diagonal polylines and express that they are asymptotic
(Fig. 8(D)). We use the normal n at vertex v, and the two neigh-
boring vertices va, vc on the chosen diagonal polyline, and express
its asymptotic property by a tangential discrete osculating plane,
i.e. one with normal n,

n · (va � v) = 0, n · (vc � v) = 0. (12)

Discrete AAG-webs. Here, we add one family of diagonal polylines
to an A-net (Fig. 8(C)). With the unit normal n at vertex v, and the
two neighboring vertices va, vc on the chosen diagonal polyline,
we express the geodesic property by a discrete osculating plane
containing n. This requires coplanar vectors n, va � v, vc � v,

n · [(va � v) ⇥ (vc � v)] = 0.

In our optimization framework, we prefer quadratic constraints
and thus replace this equation by

n · m = 0, m = (va � v) ⇥ (vc � v). (13)

Discrete AGAG-webs. As illustrated in Fig. 8(C-D), one may apply
this to both diagonal polylines and obtain a discrete 4-web, which
we call an AGAG-web. As we will see later, it is possible to obtain
numerically sufficiently accurate results. However, the existence
of a precise solution of the constraint system and of the smooth
counterparts is not proven. In fact, a count of degrees of freedom
raises doubts. If such exact solutions exist, the variety of possible
shapes is certainly small.

By construction, the two diagonal quad meshes of the A-net
in an AGAG-web are geodesic nets with planar faces. Hence, they
are discrete versions of conjugate geodesic nets, first studied by
A. Voss [14]. These Voss nets have the remarkable property that
they possess isometric deformations which keep them geodesic
and conjugate. While the preservation of the geodesic property
under an isometry is clear, the preservation of the conjugacy
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Table 1
Optimization constraints for hybrid webs.
Webs Variables Constraints
AGG v (9), (10) and (12)
AAG v,n,m (6), (7) and (13)
AGAG v,n,m1,m2 (6), (7), (9) and (11)

relation is very unexpected, as it is expressed via the second
fundamental form. Discrete Voss nets are remarkable examples
of flexible quad meshes with rigid planar faces. They are also
reciprocal parallel nets to discrete surfaces of constant negative
Gaussian curvature (see e.g. [15,17,50]), which can be covered by
planar quad panels; see Montagne et al. [51]. Unfortunately, one
cannot show that a Voss net may always be extended to an AGAG-
web, which is already expected from the fact that there are also
positively curved Voss nets.

3.3. Optimization

Having provided the constraints to be imposed on the various
types of discrete structures we are interested in, we now turn
to the numerical solution of the arising systems of constraints.
We apply the guided projection algorithm [52], which is an ap-
propriately regularized Gauss–Newton method. It uses auxiliary
variables in order to have constraints that are at most quadratic.

Besides all vertices v of the mesh as variables, normals n at
v and binormals m of geodesic polylines are extra variables. The
constraints for AGG-, AAG- and AGAG-webs are summarized in
Table 1. Almost all constraints are quadratic, except for (8). There,
we simply take the norms of edge vectors kvi � vk from the
previous iteration. Moreover, we insert (8) into (9) and therefore
the edge vectors gi do not appear as auxiliary variables in our
optimization.
Fairness. Our target is to get discrete webs that resemble webs of
smooth curves on smooth surfaces. The above hard constraints
are in general not sufficient to achieve that, unless the initial
mesh for the optimization is already close to a final solution.
Therefore, we adopt a fairness energy of mesh polylines. We
use the standard approach by adding vanishing squared second
differences vi+1 � 2vi + vi�1 = 0, applied to all polylines forming
the web, as soft constraints into the final objective function (14).

Controlling the change of vertices. If the initial mesh is far from
fulfilling at least one of the hard constraints of the targeted type
of web, we add a self-closeness constraint: Mesh vertices v(j�1)

from the previous iteration should not change much when going
to the next iteration,

v(j�1) � v(j) = 0.

For interactive manipulation of a web, we gradually change the
location of selected vertices vs to new positions vns , via the con-
straint vs � vns = 0 (see Figs. 11 and 16).

Proximity to curves or surfaces. If selected vertices vp of the mesh
are constrained to a plane, defined by its normal np and a point
p, they satisfy

(vp � p) · np = 0.

If selected vertices vp shall stay close to a reference surface � , we
compute for the current position of vp the closest point p 2 � ,
the unit normal np of � at p and add the above constraint. It
expresses proximity to the tangent plane of � at p, which is
known as a good approximation of the squared distance function
to � for points close to � [53]. The closest point computation
has to be repeated after each iteration. Analogously, if a vertex
vp shall glide along a given curve c , we require it to be on the

tangent (direction vector tc) at the closest point pc of the curve,
i.e.

(vp � pc) ⇥ tc = 0.

Target function. Above hard constraints Ci(X) = 0 from Table 1
and the various additional terms are put into a non-linear least
squares problem with the objective function

F (X) =
X

Ci(X)2 + !1

X
Kj(X)2 + !2

X
Vk(X)2

+ !3

X
Pl(X)2 + ✏(X � Xc)2,

(14)

where Xc contains the current values of all variables X . Kj(X)
collects the fairness terms, Vk(X) belongs to vertex control and
Pl(X) to proximity constraints.

Choice of weights. We set ✏ = 0.001. Fairness is a soft constraint
and we set its weight to !1 = 5e� 4 during the initial iterations.
Their number depends on how far the initial mesh deviates
from the targeted constraints. Once the optimization achieves a
residual value below a certain threshold (we use 1e � 6), we run
2-5 more iterations with !1 = 0 and then terminate the process.
If self-closeness is turned on, the weight is initially !2 = 0.01
and we use !1 = 5e � 3 during the initial iterations, until the
preferred residual value is achieved. Then, we run 2-5 iterations
with !2 = 0, !1 = 5e � 4, and finally 2-5 iterations with
!1 = !2 = 0 and stop the process. The proximity weight !3 is
set based on the user’s preference. A higher value of !3 produces
closer proximity to the targeted curves or surfaces, at the cost of
a higher deviation from the hard constraints. For the examples
involving proximity in this paper, !3 starts with 0.1 and then
turns to 0 in the final iterations. The changes of weights !1, !2
and !3 can be set and incorporated into the algorithm before
starting the optimization. Details for selected figures are listed in
Table 2.

Initialization. Since the present optimization problem is nonlinear
and non-convex, a good initialization is important. A safe ap-
proach is to use explicitly known AAG- or AGG-webs to special
shapes to initialize a modeling session and then deform that
shape by interactive editing operations. A basic editing operation
is to gradually move vertices to new positions, while keeping a
few other vertices nearly fixed (soft constraint with low weight).
One can also try to attract a selected boundary to a given curve
or to a given plane. From a mathematical perspective, this ap-
proach uses optimization to navigate in the constraint manifold
MC starting already from a position in MC . The details for AAG-
and AGG-webs are as follows:

AAG-webs are initialized with negatively curved rotational sur-
faces R. There, the asymptotic curves and meridians (in planes
through the axis) form an AAG-web. If the surface is given in
parametric form, one can compute a single asymptotic curve as
a polyline by integrating the differential equation of asymptotic
curves, and forming a web from rotated and reflected copies of
it. This yields an A-net with a discrete rotational symmetry and
one family of diagonal polylines in planes through the rotational
axis. Prior to further manipulation, one may cut it open or select
just a part of the initial AAG-web.

AGG-webs can be initialized with developable surfaces as dis-
cussed in Section 2.3. An AGG-web on a developable surface
consists of the rulings (asymptotic curves) and two further fam-
ilies of geodesics. In the planar unfolding, such a web consists
of straight lines, which can be designed using the explicit results
of Graf and Sauer [10]. We implemented the case of a cylinder
with the simplest web on it, namely one which consists of three
families of parallel lines in the planar unfolding of the cylinder
and includes the rulings (see Fig. 9). During shape modification of
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Fig. 9. AGG-webs optimized from a developable surface. (A) A cylindrical AGG-
web, which is isometric to a planar rectangular mesh with straight diagonals. (B)
AGG-web obtained from the initial cylindrical web by interactive editing. The
surface is colored by Gaussian curvature: K < 0 (blue) and K = 0 (white). (C)
Designed AGG-web with developable strips. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

this cylindrical AGG-web, we keep the asymptotic property of the
rulings, but make sure that they become curved, and of course we
keep the geodesic property of the other two families of geodesics.

A less safe, but sometimes successful approach for initializa-
tion is to start with an A-net or a G-net in which one family
of diagonals is then optimized to the required G- or A-property,
respectively. We tried this with A-nets representing certain min-
imal surfaces (Fig. 10) and in some cases optimization has been
successful, even when asking for an additional property like pla-
narity of a selected boundary polyline, or keeping a non-trivial
topology.

Recall the following well-established procedure: In order to
get an A-net on a given negatively curved surface, one can
compute asymptotic directions, e.g. by the Rhinoceros3D plugin
Bowerbird [44,45] and then re-mesh the surface along this guiding
field with a quad-remeshing algorithm. There, we prefer to use
the libigl [54] implementation of mixed-integer quadrangulation
(MIQ) [55]. Subsequent optimization for planar vertex stars will
only slightly change that mesh and result in an A-net, which may
then be further optimized towards an AAG-web.

Example for deformation and verification. We start with a discrete
version of a rotational surface of constant Gaussian curvature
K < 0 (Fig. 11). The A-net in this case has constant edge length. It
is known that A-nets with constant edge length can discretize any
surface of constant negative Gaussian curvature (see e.g. [16,17]).
The A-net is extended to an AAG-web by polylines in planes
through the rotational axis.

We tested the flattening process of an AAG-web, by keeping
the AAG property and edge lengths of the A-net, but allowing the
G-net to change length. The simulation yielded accurate results:
The geodesic planks adjust their length and become straight in
the planar state. There, the A-net is formed by cylindrical strips

orthogonal to the ground. A similar experiment was conducted
and verified physically in Section 4.1.

This example is also a good test for the accuracy of our discrete
model and optimization for the following reason: All obtained
webs must represent discrete rotational surfaces with constant Gaus-
sian curvature K , but different values of K at different states. This
follows by the symmetries of faces. Each face is a skew rhombus
(quad with equal edge lengths) and symmetric with respect to
two orthogonal planes. Each of these symmetry planes is spanned
by one diagonal and contains the normals at its end points. These
normals are present in the A-net and must agree for faces sharing
a vertex. For those diagonals, which form geodesic polylines, also
the symmetry planes must agree. Hence, an entire strip of quads
sharing a geodesic polyline PG is symmetric with respect to plane
of PG. This holds for all geodesic polylines and immediately shows
the discrete rotational symmetry. Moreover, the limit positions
of the asymptotic polylines in the planar state lie in general on
congruent circles. These contain the common point of the lines on
which the geodesics of the planar web lie. The proof is again simple:
As a limit of rotational symmetric webs, the planar state also
has rotational symmetry. There, the straight geodesic polylines
(red lines in Fig. 11) must pass through a common point C .
Moreover, we have a net of congruent rhombuses in the plane.
Thus, it is formed by translating a polyline with constant edge
length against another one. These are the limit positions of the
asymptotic polylines (blue in Fig. 11). Because of the rotational
symmetry, each edge of such a polyline appears from the center
C under constant angle and therefore all its vertices lie on a circle
through C .

A further special planar limit state of Fig. 11 has parallel
asymptotic and geodesic strips, thus forming a regular grid. A
similar physical experiment was conducted and digitally modeled
in Section 4.1.

Another example, even more closely related to that experi-
ment, is the editing example of Fig. 16.

3.4. Subdivision and extraction of strips

Refinement through subdivision. So far, we only described the
most important step A in the entire computational approach
(see Fig. 7). This is followed by a simple subdivision through
bilinear interpolation of the individual quads (Fig. 7(B)). We then
optimize the refined mesh so that the originally already present
discrete curves (now refined) keep their properties of being dis-
crete asymptotic or geodesic curves (blue and red polylines in
Fig. 7(C)) on the refined surface (grey mesh in Fig. 7(C)). There,
we can use the constraints for asymptotic or geodesic polylines
discussed in Section 3.2. However, we have to define the vertex
normals n in another way. Here, we simply require n to be
discrete normals to the other mesh polylines through v. If v� and

Fig. 10. AAG-webs optimized from classical minimal surfaces. Part of their boundary curves (red) are constrained to be planar or linear. (A)-(B) Initial mesh from
a Scherk tower surface. (B) Two bottom boundary curves are linear and another two planar. (C) Initialized from part of a Schwarz H surface. Bottom boundaries are
coplanar. (D)-(E) Initial mesh from a Schwarz P surface. (E) Coplanar bottom boundary curves. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Table 2
Optimization statistics to selected Figures of different complexity. The initial meshes we use all have a unit-length
diameter of their bounding boxes. The algorithms are implemented in Python and tested on an Intel Xeon E5-2687 W
3.0 GHz processor.
Fig. |vertices| |variables| !1 !2 !3 T/iter err=F (Xmin)
7(C) 289 1947 5e-4 !0 0 0 0.068 s 2.8e�22
10(B) 308 2436 5e-3 !5e-4!0 0.01 !0 0.1 !0 0.071 s 4.0e�14
11(D) 169 1233 5e-4!0 0 0 0.056 s 2.3e�12
12(A) 725 7764 5e-4!0 0 0 0.029 s 3.2e�12
13(A)-right 420 4302 5e-4!0 0 0 0.015 s 1.3e�8
13(B)-left 1037 8421 5e-4!0 0 0 0.018 s 2.8e�19
13(C)-left 450 4626 5e-4!0 0 0 0.21 s 3.8e�11
13(C)-right 645 6732 5e-4!0 0 0 0.3 s 1.2e�10
14 661 4755 5e-4!0 0 0 0.011 s 1.1e�12
17(A) 160 1248 5e-3 !5e-4!0 0.01 !0 0.1 !0 0.07 s 1.9e�16
20(A) 341 2589 5e-3 !5e-4!0 0.01 !0 0.1 !0 0.081 s 4e-20

Fig. 11. Flattening a rotational AAG-web by keeping the AAG property and edge
lengths of the asymptotic net in the web. These edge lengths are constant in
the present case, implying that each position of the web represents a surface
of constant negative Gaussian curvature K (the value of K is changing during
deformation and zero in step D). (A) The black patch of the rotational AAG-web
is selected. (B)-(D) States of a deformation achieved by interactive editing. They
lie on rotational surfaces. State (D) is planar and thus the geodesics are straight.
The asymptotic curves in the planar state lie on congruent circles.

v+ are the two neighboring vertices of v on such a polyline, we
add the constraint

(v� � v+) · n = 0.

As a result of step C in our overall process, we have the basic
polylines for the strips which form the final gridshell. These are
sufficiently well designed discrete curves, from which one may
directly extract the strips with help of the rectifying developable
surfaces (Section 2.2). While this process can also be done in a
discrete fashion, we describe in the following an alternative based
on splines. This is also useful for integration into a NURBS-based
modeler.

Extraction of strips. Each discrete asymptotic or geodesic polyline
arising from step C is now interpolated by a C3-spline curve
c(t) composed of Bézier curves of degree 5. Their end points
are exactly the nodes of the web, where we make sure that the
osculating plane is tangent (A) or orthogonal (G) to the reference
mesh. Together with the linear C3 constraints at nodes, a standard
least squares approximation (see [56]) is applied.

Fig. 12. The computed mesh (A) was used to create a physical verification model
(B). For this purpose, straight slats were connected laterally with hinged 3D
joints.

Due to C3 smoothness we obtain a continuous sequence of
rulings in the developable strips, since the direction vectors of
rulings are given by the Darboux vectors rD = ⌧e1 + e3, where
torsion ⌧ depends on the third derivative of c. The computation
of these differential geometric quantities for polynomial curves is
straightforward. If the strip has width w, we see from its unfolded
straight version, that a ruling r(t) meets the given boundary
and the other boundary at points c(t), c̄(t) of distance dr =
w/ cos↵, where ↵ denotes the angle of rD and the binormal e3(t).
This yields the following parametric representation of the other
boundary c̄,

c̄(t) = c(t) + w

rD(t) · e3(t)
rD(t).

For a general polynomial curve c(t), neither the binormal vector
e3 nor the Darboux vector rD are rational in t , and therefore the
other boundary c̄(t) does in general not possess an exact NURBS
representation. This is of no concern for the present application.
Of course, one can come up with a NURBS approximation of
sufficiently high accuracy.

The positions of rulings have an influence on the physical
realization. If they are not too far away from the surface nor-
mals of S, bending will occur roughly along short line segments

10



E. Schling, H. Wang, S. Hoyer et al. Computer-Aided Design 152 (2022) 103378

Fig. 13. Digital models of various types of asymptotic geodesic hybrid gridshells.
Row (A) AGG-webs, row (B) AAG-webs, row (C) AGAG-webs with low numerical
errors (see Table 2). A zoom onto one strip, orthogonal to the reference surface,
together with the ruling vectors is also shown.

transversal to the slat. A ruling close to the tangent of c would
indicate diagonal warping of the slat, and result in a curved cross-
section at the intersection points. One may see this also from a
mechanical perspective. The actual physical realization forces the
asymptotic strips through the straight node axis (orthogonal to
S) at each joint. This causes the asymptotic strips to twist, and
slightly diverge from a purely developable shape.

Fig. 12 shows a simple digital model designed with our algo-
rithm and verified by a physical model. Further results obtained
with our computational framework are shown in Fig. 13. The
shapes are relatively simple, which is partially due to the type of
initialization we are currently using. The existence of AGAG-webs
of sufficiently high accuracy (see Table 2) comes as a surprise.
They have been computed using simple AGG-webs (such as the
one in Fig. 13, top left) as initialization, followed by optimization
towards the AGAG property.

Meshes with combinatorial singularities. So far, our discussion
has been confined to nets and webs of regular combinatorics.
This limits the shape variety. Note that the A-net of a negatively
curved surface has singularities at the flat points of the surface.
One can realize some surfaces with flat points by AAG-webs as
well. However, certain modifications are required (see Fig. 14).
First of all, we note that in a singular vertex of an A-net an even
number N � 6 edges meet (N = 8 in Fig. 14). We optimize the
web with the presented constraints only at regular vertices. The
diagonal geodesics cannot run smoothly over the entire surface,
but have to break at N polylines through a singularity. Such
break points (tangent discontinuities of an underlying smooth

Fig. 14. An AAG gridshell with a central combinatorial singularity. Diagonal
geodesics break at eight polylines through the singularity.

curve) can be modeled by not applying the fairness term there.
Essentially, one divides the web into N combinatorially regular
AAG-webs.

3.5. Link to the Grasshopper and Rhinoceros 3D environment

A user-friendly design tool has been realized by integrating
the optimization into the CAD system Rhinoceros 3D. Our plugin
allows the user to define the main inputs to the optimization,
the initial mesh, the web type, strip width and optimization
parameters like the number of iterations and weights. The results,
namely the optimized mesh, strip boundaries in piecewise quintic
Bézier form, ruling vectors, the developable strips as well as their
developments are returned as Rhinoceros 3D geometry objects.
The optimization is implemented in CPython and called from
Grasshopper, Rhinoceros’ parametric design extension, using the
Hops component [57]. This allows the user to offload the actual
computation to a more powerful remote machine, if desired. We
will make our plugin available to the architectural community in
the near future.

4. Architectural investigation

Asymptotic-geodesic hybrids offer several benefits for archi-
tectural design and construction: The use of standardized straight
slats allow simple fabrication, logistics and transport. The com-
bination of geodesic and asymptotic planks creates structural
stability, through triangulation and the interaction of tall and
wide profiles. The geodesic grid offers effective cladding with
standardized, straight press-strips and developable panels. Apart
from these functional benefits, the complementary weaving of
flat and tall elements has a strong graphical depth and naturally
creates an aesthetic pattern.

In this section, we first conduct a physical experiment to
investigate the natural elastic behavior and form-generation of
AG-nets and gain insights on the erection process of triangulated
webs. Then, the computational method is implemented to design
two architectural scenarios in timber and steel that showcase the
possible applications of AG-nets for elastic gridshells and curtain
wall design.

4.1. Physical experiments

A physical experiment is conducted to form-find AAG-, AGG-
and AGAG-webs. For this purpose, a simple joint was designed,
which allows the combination of two vertical and two horizontal
lamellas. The joint is printed as a 90-degree intersection with suf-
ficient tolerance to allow up to 5 degrees of play. 5x1 mm timber
lamellas are loosely slotted through the joints to allow sliding and
adjusting their length. Three combinations are investigated (see
Fig. 15):
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Fig. 15. Physical deformation experiment for equilateral AG-webs. AAG- and AGAG-webs naturally deform into a negatively curved shape. AGG-webs naturally seek
a nearly developable shape. A similar deformation of an AAG-web was simulated digitally (see Fig. 16).

• AAG: A regular net of 8 ⇥ 8 asymptotic lamellas combined
with 13 diagonal geodesic lamellas.

• AGAG: The same regular grid as AAG, with a second diagonal
layer of geodesics.

• AGG: A regular net of 8 ⇥ 8 geodesic lamellas combined
with 13 diagonal asymptotic lamellas.

Each of the samples is laid flat on a table and simply lifted up
on two opposing corners, to initiate a natural transformation into
double curvature.

The AAG-web naturally takes on a negatively curved shape
with asymptotic curves curving outwards on all four sides. During
this experiment, the asymptotic curves shift very little, while
the geodesic lamellas noticeable glide through the printed joints,
using shorter lengths in the center and elongating in the corners.
The final shape has a high similarity with a rotational surface,
as geodesics showed close to no torsion and each remained in
a plane. This deformation of an AAG web is also modeled digi-
tally using the editing example Fig. 16. The optimization starts
from a planar grid and includes a limited angle change of the
90-degree nodes (imposed by the 3D-printed joints in Fig. 15).
The gliding of slats through the nodes is incorporated into the
optimization by allowing a change of edge length, but keeping
the total lengths of slats unchanged. From a purely geometric
perspective, the obtained shape must be close to part of a rota-
tional minimal surface (catenoid), since the nodes constrain the
asymptotic curves to be nearly orthogonal and the geodesics to
nearly bisect the asymptotic curves. Hence geodesics must be
nearly principal curvature lines. A geodesic principal curvature
lies in a plane which intersects the surface under right angle. This
finally yields the near rotational symmetry, seen very well in our
experiments.

The AGAG-web shows a much more restricted movement, but
does deform into negative curvature, similar to the AAG-sample.
Due to the specific nodes, the geometric restrictions of AGAG
webs as discussed in Section 3.2 are now even more severe:
Following up on the discussion of AAG-webs with the present

Fig. 16. AAG-webs, designed through interactive editing via handle-points.
Starting from a planar square grid (initial A-net) with two opposite corner
points (green) constrained to the plane (weight 1), we move a central point
(red) gradually to produce a sequence of AAG-webs. In addition, we require
orthogonal nodes of the A-net (weight 0.1) and keep the total length of each
asymptotic polyline and geodesic polyline (weights 1). The green points glide
in the starting plane, the orange point is fixed, and the red point is the moving
handle. This process simulates the bending experiment of the physical AAG
gridshell in Fig. 15. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

nodes, one needed to have a minimal surface which is rotational
with two different axes, and this is not possible. This shows
that a purely geometric deformation model is not sufficient. One
also needs to consider tolerances at joints and the deformation
behavior of the used material.

The AGG-web directly approached a developable shape, where
geodesics showed high deformation while the family of asymp-
totic curves remained nearly straight with a slight s-curve. We
attribute this behavior to the combination of two orthogonal fam-
ilies of geodesics, which are naturally restricted to a developable
surface. However, the tolerances in the nodes allowed for skewing
of the grid and slight bulging of the shape.

Erection Strategy. The AAG-experiment reveals a simple phys-
ical strategy to construct AAG-gridshells: The grid of lamellas
can be assembled flat and pushed up in the designed shape, if
geodesic lamellas are able to slide through each joint and adjust
their node to node length. The architect can make full use of the
compliant mechanism of asymptotic slats, and lock the design
shape by securing the geodesic joints. This strategy, however, will
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affect the possible design shapes. We believe that only rotational
AAG-webs allow for sliding geodesics from flat to curved. In any
other AAG-web, the geodesics either need more tolerance in the
joints, or the erection process has to be completed with only the
two asymptotic families, and the geodesic family of lamellas is
attached later to secure the curved gridshell. The kinetic behav-
ior of AAG-webs will be investigated in a separate publication
comparing physical experiments with digital simulations.

4.2. AAG timber module

The first architectural scenario is investigating a structural
timber grid (see Fig. 18). The goal is to design a doubly curved
column-and-roof structure using only identical slats and fully uti-
lize the structural benefits of the hybrid web. The design proposal
is a quarter portion of a rotational surface, that is cropped by a
4 ⇥ 4 m square boundary. This segment is 2.6 m tall and could
be used as a single cantilevering structure, or as a modular unit
that can be combined to form a circular structure. The surface
is carefully designed as a funnel shape with almost cylindrical
geometry at the base. This forces the asymptotic slats to become
vertical and efficiently carry loads to the supports. For the same
reason, the geodesic slats are arranged vertically and densify
towards the supports.

The innovation of this design lies in the detail. Laminated
bamboo slats, with approx. 80 ⇥ 8 mm rectangular cross-section,
offer the necessary elasticity and strength for this prototype.
Similar to the first timber prototype (see Fig. 2) the two families
of asymptotic lamellas are assembled on separate levels so that
profiles are continuous. Each asymptotic lamella consists of two
slats which are coupled at every joint with rectangular blocks that
are cut from the same 80 ⇥ 8 mm timber profile. The double
lamella has several advantages: It allows embedding the geodesic
curvature during prefabrication, by incorporating the slight dif-
ferences in node to node distance between inner and outer slat,
before laminating them together. The coupling of two lamellas
increases the lateral bending stiffness against buckling due to
compression or torsion, following a similar strategy as the ribbed
shells described in Section 1. Finally, the parallel layout allows to
create concentric joints, by inserting two adjacent spacer blocks
to define the position of joints as 8 ⇥ 8 mm gaps between the
two slats (see Fig. 18(C)).

The two families of lamellas are connected by threading M8,
200 mm bolts through these gaps. This connection acts as a
scissor joint and allows rotation of the two families during the
erection process. An 8 mm spacer (again using the same material)
is added between the top and bottom lamella to avoid friction
between asymptotic slats. The spacer also creates the necessary
gaps for the diagonal geodesic slats.

Unlike our optimized webs suggest, the geodesics are not
assembled from node to node but shifted by half a grid, con-
necting to the asymptotic slats at mid points between two nodes.
This, again, has several advantages: By avoiding the intersection
of asymptotic lamellas, the geodesics can be assembled inde-
pendently. They are interwoven between the top and bottom
asymptotic lamellas, either in the flat position or later in the
curved shape. This also allows them to slide between the asymp-
totic lamellas, and thus accommodate for the change in length
and additional sideways movement during erection as described
in our physical experiments in Section 4.1. The connection of
geodesics to asymptotics can be tightened independently. The
joint functions analogously to the main joints, but with a bolt
of half the length, connecting the horizontal slat alternatively
to bottom or top lamellas. Once the grid is formed into the
correct design shape, the geodesics are fixed and thus triangulate
the grid creating a rigid gridshell. Connecting the mid-points of

Fig. 17. The timber roof structure was designed to be constructed exclusively
from straight lamellas, including the edge and support beams. (A) Computed
rotational AAG gridshell. Top and bottom mesh boundaries have square and
circular shapes, respectively. (B) One quarter of the timber structure. (C)
Developments with straight strips.

asymptotic lamellas halves their buckling length with significant
improvement for the structural behavior.

The design was verified through a 1:1 joint and a 1:5 model
(see Fig. 18). This experimental assembly proved more chal-
lenging than expected, as the lamination process of asymptotic
double-lamellas increased their bending stiffness and caused
higher resistance against bending and torsion during the erection
process. Because of this, the geodesics could not be threaded
completely in a flat state, but had to be pushed through the struc-
ture subsequently during the erection. This model was further
reinforced by creating strong edges, with two additional geodesic
lamellas added at the top and bottom. As expected, the final
structural grid showed high rigidity. A thorough investigation of
the structural behavior, looking at stability, stiffness, as well as
elasticity and strength of timber, will be published in a separate
paper.

The two complementary orientations of slats appear like a
woven fabric, in which the geodesics act as an interlayer empha-
sizing the depths of the outer asymptotic lamellas (see Fig. 18(B)).
The regularity of joints across this doubly-curved web adds to the
strong graphical effect of complexity and order.
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Fig. 18. A timber prototype was constructed at 1:5 scale (80 x80 cm). The combination of double asymptotics and interwoven geodesics create a strong web, halves
the buckling length and braces the structure. A 1:1 joint was build to test the laminated joints, and bolt connections.

Fig. 19. Optimization workflow for the Emporia Shopping Center facade: (A)
Original mesh with four planar boundaries. (B) Optimized AAG-web with fixed
points and boundaries gliding on the same original planes. The strips are shown
in Fig. 20(A). (C) Comparison of meshes (A) and (B).

4.3. Steel and glass facade

The second architectural scenario is investigating a multi-
story steel and glass facade. The design proposal is inspired by
the Emporia Shopping Center Entrance in Malmö (designed by
Wingardh Arkitektkontor, 2012). This horseshoe shaped atrium is
composed of 473 double and single curved glass panels arranged
in a diamond grid. The diagonal grid was remodeled and trans-
lated into a symmetric mesh, in order to be rationalized for an
AAG-web using the method presented in Section 3 (see Fig. 19).
The original design surface shows regions of positive Gaussian
curvature, which naturally disappeared during optimization and
account for the large deviation from the original reference sur-
face. The symmetric surface was finally cropped on one side to fit
the original facade (see Fig. 20). A 1:20 model of the design was
built from spring-steel strips to verify the feasibility and material
behavior (see Fig. 22).

Fig. 20. Architectural scenario of a doubly curved steel facade structure with
developable glass panels. The design is inspired by the Emporia shopping Center
Entrance in Malmö.(A) The strip geometry is used to generate a detailed ar-
chitectural model of asymptotic double-lamellas, hinged joints and developable
facade panels. (B) The facade is integrated as semi courtyard in a rectangular
building block.

This new application focuses on the benefits of a deep asymp-
totic substructure spanning between concrete slabs to resist wind
loads. The geodesic layout has several benefits. The mullions
brace the façade structure by triangulating the grid. They act
as a substructure for the single-curved cold-bent glass panels.
A second flat press strip is installed on the outside to clamp
the glass panels down and secures the individual curvature. The
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Fig. 21. Prototypical steel joint for the doubly curved facade structures (B). All elements can be unrolled flat and straight (A). The asymptotic lamellas are segmented
and connected at each intersection through a hinged scissor joint that adjust to the individual intersection angle. The geodesic lamellas acts as the outer mullion
system that clamps the developable glass panels.

glass panels themselves follow the geodesic direction and can be
produced from flat trapezoidal sheets.

Each asymptotic beam consists of two steel strips of approx-
imately 5 ⇥ 200 mm (see Fig. 21). The strips are coupled in
regular intervals with steel spacers of approximately 40 mm.
These steel composite beams are prefabricated offsite from flat
sheet material and installed with their final geodesic curvature
and torsion embedded. Both asymptotic families intersect in one
level to reduce the depth of the construction. They are segmented
at the intersection points. The joint is composed of three steel
elements that create a cross-shaped scissor joint and can be used
universally for all intersections in the asymptotic net. The joint is
fixed with a central bolt, which extends outward to connect to the
geodesic mullions. The mullions are extruded aluminum profiles
that clamp the developable glass panels.

5. Conclusion

Combining geodesic and asymptotic paths in a doubly curved
web, offers rich insights for architectural geometry, design and
construction.

Geometry. The practical considerations naturally led to the new
topic of webs on surfaces which consist of geodesic and asymp-
totic curves. We could provide examples for exact webs and
showed how to computationally access the problem using a dis-
crete model based on concepts of discrete differential geometry,
and effective techniques for numerical optimization. We could
answer some initial questions that come up in connection with
the deployment from a planar state.

Design. The computational method to design AG-nets can be
initiated from any asymptotic or geodesic mesh and manipulated
interactively by point editing or through boundary conditions to
adjust to the designated design shape. The method was tested on
open and closed shapes with and without singularities and finally
implemented in the design of a timber gridshell module and a
doubly curved steel glass façade.

Construction. The combination of tangential and normal planks
in a triangular gridshell creates hybrid benefits for the bracing
of the grid structure and its resistance to bending and offers the
possibility to use the geodesic mullions as a substructure for de-
velopable panels. The deformation of AAG-webs was investigated
physically and digitally, and has shown that an elastic erection
process from flat to curved is possible for rotational surfaces, if
geodesic planks are able to glide through joints and adjust their
length. For efficient gridshell construction, the geodesic family

Fig. 22. Steel model of the optimized AAG facade structures at scale 1:20, shown
in elevation (A), plan (B) and close-up view (C). The two asymptotic families
are constructed with slots in the same level. The geodesic lamellas function as
triangulation and substructure for the transparent facade panels.

of planks can be shifted by half a grid, to avoid the asymp-
totic intersections, allow independent installation and connect
the slender asymptotic lamellas at mid-points to improve their
buckling behavior.
Future research. In a forthcoming publication, we will report on
the generation of discrete AAG- and AGG-webs by an evolution
process which starts with an appropriate initial strip and suc-
cessively adds further strips by keeping the required properties.
This type of discrete model generation has been described by
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R. Sauer [11] for the case of GGG-webs. In this way, one can
enrich the variety of starting shapes for further shape manipu-
lation through editing. It will, however, still be difficult to come
close to a certain target shape. Therefore, we will also investigate
the generation of webs using a level set approach. It plays an
important role in the theory of webs [9] and yielded good results
for GGG-webs [20]. However, also the level set approach requires
an initialization that influences the result. Its choice is not simple.
Moreover, we cannot fix the target shape, since the degrees of
freedom in creating an AAG or AGG-web (even GGG-web) are not
sufficient. Hence, we need to combine the design of the web with
a minimal shape change of the reference surface.

The kinetic behavior of AAG-webs for the erection process
will be investigated further, by comparing geometric and me-
chanical simulations with physical experiments. The design and
construction of an AAG timber gridshell will help to learn more
about the building process, construction details, bending behavior
of wooden planks and structural performance of the asymptotic
geodesic grid. We plan to publish these findings in a separate
paper.
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