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Motivated by applications in architectural geometry, we study and compute surfaces with 
a constant ratio of principal curvatures (CRPC surfaces) based on their characteristic param-
eterizations. For negative Gaussian curvature K , these parameterizations are asymptotic. 
For positive K they are conjugate and symmetric with respect to the principal curvature 
directions. CRPC surfaces are described by characteristic parameterizations whose param-
eter lines form a constant angle. We use them to derive characteristic parameterizations 
of rotational CRPC surfaces in a simple geometric way. Pairs of such surfaces with prin-
cipal curvature ratio κ1/κ2 = ±a can be seen as equilibrium shapes and reciprocal force 
diagrams of each other. We then introduce discrete CRPC surfaces, expressed via discrete 
isogonal characteristic nets, and show how to efficiently compute them through numerical 
optimization. In particular, we derive discrete helical and spiral CRPC surfaces. We provide 
various ways how these and other special types of CRPC surfaces can serve as a basis for 
computational design of more general CRPC surfaces. Our computational tools may also 
serve as an experimental basis for mathematical studies of the largely unexplored class of 
CRPC surfaces.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The present paper has been motivated by applications in Architectural Geometry. There, one goal is the design of surfaces 
that have an appearance of freeform shapes, but possess properties which facilitate their construction. An important part 
of fabrication concerns the cladding with panels. If those are doubly curved and their fabrication therefore requires the 
use of a mold, it is an advantage to have a small number of molds. One way to achieve this is by a reduced number of 
curvature elements. This happens if the surface possesses a relation between its principal curvatures κ1, κ2. These surfaces 
are called Weingarten surfaces, studied first by Weingarten (1861) in the same paper in which he introduced the shape 
operator. The advantage of Weingarten surfaces for paneling architectural freeform surfaces has recently been confirmed in 
several contributions (Pellis et al., 2020, 2021a,b). There are also arguments for structural advantages of certain types of 
Weingarten surfaces (Tellier, 2020).

The surfaces studied in the present paper also emerged through special architectural structures, called asymptotic grid-
shells (Jiang et al., 2020; Schling et al., 2018; Schling, 2018). They are fabricated by bending flat straight lamellas, which 
in their final position are orthogonal to an underlying smooth surface on which they follow asymptotic curves (Fig. 22). 
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Fig. 1. Architectural design study exhibiting a structure from planar panels based on a discrete CRPC surface with a = 0.45. The constant node angle ( �= π/2) 
and the principal symmetric arrangement lead to a more interesting visual appearance than a mesh aligned with principal curvature directions would have.

If one requires in addition a constant angle at nodes, these structures realize surfaces whose asymptotic directions form a 
constant angle, i.e. κ1/κ2 = a = const. < 0. Hence, they are special Weingarten surfaces, namely surfaces with a constant ratio 
of principal curvatures (CRPC surfaces). Also the positively curved CRPC surfaces are of interest in architecture. This is not only 
true because of cost effective paneling with double curved panels. Our discrete versions of them provide visually attractive 
meshes with planar faces, suitable for realization as steel glass structures (Fig. 1).

Interestingly, CRPC surfaces are related to yet another topic in architectural geometry, namely the so-called Caravel 
meshes of Tellier et al. (2020). In an asymptotic analysis of Caravel quad meshes and Caravel hexagonal meshes with edge 
offsets, the principal curvature ratio appears in the aspect ratio of faces, so that CRPC surfaces give rise to particularly well 
balanced Caravel meshes.

Applications mainly benefit from effective computational models, often based on discrete differential geometry (Bobenko 
and Suris, 2008). From this perspective, Jimenez et al. (2020) studied discrete CRPC surfaces, obtaining discrete principal 
parameterizations through a novel Christoffel-type transformation of certain spherical nets. They also addressed the case of 
discrete asymptotic parameterizations (A-nets), but based it on a discrete angle condition which is less effective than the 
ones used in our work.

CRPC surfaces are a natural generalization of minimal surfaces and thus deserve interest from a purely geometric per-
spective. While there is a huge body of knowledge on minimal surfaces, very little is known about CRPC surfaces. Explicit 
parameterizations are only available for rotational CRPC surfaces (Hopf, 1951; Kühnel, 2013; Mladenov and Oprea, 2003, 
2007; Lopez and Pampano, 2020). We especially point to a recent paper by Lopez and Pampano (2020) which contains a 
classification of all surfaces with a linear relation κ1 = aκ2 +b between principal curvatures, including a study of the special 
case b = 0 of rotational CRPC surfaces. The authors also provide a variational characterization of the profiles of these sur-
faces. Rotational CRPC surfaces with K < 0 have also been characterized via isogonal asymptotic parameterizations f (u, v)

where ‖ fu‖ = ‖ f v‖ (Riveros and Corro, 2012, 2013; Stäckel, 1896). For Weingarten surfaces to a linear relation of the form 
aκ1 + bκ2 + c = 0, it has been shown that they are rotational if they are foliated by a family of circles (López, 2008).

1.1. Contributions and overview

We study CRPC surfaces with help of their characteristic parameterizations, called C-nets henceforth, both in the smooth 
and in the discrete setting. For Gaussian curvature K < 0, C-nets are asymptotic nets (A-nets). For K > 0, they are those 
conjugate parameterizations which are symmetric with respect to the principal directions. Since the curves in a C-net form 
the angle γ = arctan

√|κ1/κ2| with the first principal direction, the CRPC property is simply expressed by a constant angle 
between the curves in a C-net. Thus, we look for isogonal C-nets.

In Section 2, we derive rotational CRPC surfaces in a new way, namely with help of their characteristic curves. This 
is done via their spherical tangent images and leads to an explicit parameterization with an elementary polar coordinate 
representation of the axis-parallel projections of the characteristic curves. We also study pairs of rotational CRPC surfaces 
to κ1/κ2 = ±a and show that their C-nets are reciprocal force diagrams of each other, implying that the surfaces are mem-
branes in equilibrium and pairs of relative minimal surfaces. We illustrate our results by interesting algebraic rotational 
CRPC surfaces. One may obtain the characteristic parameterizations also by solving their differential equation based on the 
known parameterization of rotational CRPC surfaces found first by Hopf (1951) that uses the profiles in planes through 
2
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Fig. 2. Characteristic directions visualized via Dupin indicatrix and shape operator for K < 0 (left) and K > 0 (right).

the rotational axis. However, we believe it is more natural in the present context to derive them directly, since we obtain 
interesting and simple geometric insights that have not been noted so far in the literature. Moreover, we use the character-
istic parameterization later to initialize optimization algorithms for computing more general CRPC surfaces and for quality 
assessment of our discretization.

Section 3 is devoted to discrete CRPC surfaces based on discrete isogonal C-nets. From a computational perspective, these 
are special constrained quad meshes which can be computed effectively with a numerical optimization algorithm. In partic-
ular, we show how to compute discrete CRPC surfaces which are invariant under uniform motions in the group Euclidean 
similarities. This extends the previously discussed rotational CRPC surfaces towards helical and spiral CRPC surfaces. The 
main method for their generation relies on the availability of natural discrete surface normals and the use of line geome-
try or line element geometry on the set of surface normals to express invariance under uniform motions in the group of 
similarities.

In Section 4 we provide a variety of examples which demonstrate the quality of the obtained surfaces and the effec-
tiveness of numerical optimization. We present ways how the provided algorithms can be used as a design tool for CRPC 
surfaces and demonstrate this at hand of some examples that are targeted towards architectural applications.

Finally, we address directions for future research. Those need not only be in an applied setting. The presented computa-
tional tools could also serve as a basis for getting conjectures and hopefully also theoretical results on CRPC surfaces. We 
address some directions into which one might go.

2. The characteristic curves of rotational CRPC surfaces

2.1. Characteristic parameterizations

We first consider general CRPC surfaces via their characteristic parameterizations (C-nets).
Let (κi, ti), i = 1, 2, be the pairs of principal curvatures and associated curvature directions at a surface point p. Then, 

the directions which form the angles ±γ ,

tanγ = √|κ1/κ2|,
with t1 are called characteristic directions henceforth. In case of negative Gaussian curvature K , the characteristic directions 
are the asymptotic directions. For K > 0, these are exactly those directions which are conjugate to each other and symmetric 
with respect to the principal curvature directions.

For visualization, we may use the Dupin indicatrix ip , whose equation in the principal frame is given by κ1x2
1 +κ2x2

2 = ±1
(Fig. 2). Then, for K < 0 the characteristic tangents are the asymptotes of the two hyperbolas which form ip , while for K > 0
they are the diagonals in the axis rectangle of the ellipse ip .

The characteristic directions form the angle 2γ = 2 arctan
√|a|, which may be called characteristic angle. This angle char-

acterizes the shape of the curvature element (osculating paraboloid) up to similarities.
Let us take an arbitrary regular point p of a surface. The shape operator σ maps the principal directions ti, ‖ti‖ = 1, to 

σ(ti) = −κiti . Hence, the characteristic directions d j , which form the angle γ with t1, are mapped as follows (Fig. 2):

d j = 1√|κ1| t1 ± 1√|κ2| t2 �→ σ(d j) = − sgn(κ1)
√|κ1|t1 ∓ sgn(κ2)

√|κ2|t2.

Hence, the two vectors σ(d j) form the angle γ with the other principal direction t2. For K < 0, σ(d j) is orthogonal to d j . 
For K > 0, σ(d1) (σ(d2)) is orthogonal to d2 (d1, resp.). This is just another way to express that the directions d1, d2 are 
self-conjugate for K < 0 and conjugate to each other for K > 0.

Through integration of the characteristic directions we get the network of characteristic curves. They are the isoparameter 
curves of characteristic parameterizations or C-nets.

By their definition, CRPC surfaces are those with a constant characteristic angle, or in other words, are characterized through 
isogonal C-nets. Clearly, their curvature elements (osculating paraboloids and Dupin indicatrices), are similar to each other.
3
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Fig. 3. Spherical tangent and binormal images of characteristic curves on rotational CRPC surfaces. Left: Spherical motion of the Frenet frame e1, e2, e3 of 
an asymptotic curve of a rotational CRPC surface (here a = −2): The tangent vector e1 generates a spherical tractrix (pull distance γ ) of a great circle cp

in a plane orthogonal to the rotation axis of the surface. The binormals e3 run on a spherical loxodrome which intersects the great circles through the 
rotation axis under the angle γ . Center and right: Spherical loxodromes (red) as binormal images and Gaussian images of selected characteristic curves, 
and a tangent image e1 (plus projection into the horizontal plane) in case of negative curvature (middle, a = −2) and positive curvature (right, a = 3). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Characteristic directions are not well defined at umbilics, including flat points. Hence, the combinatorial singularities of C-
nets appear at these points, which are of course also the singularities of principal parameterizations. A flat point κ1 = κ2 = 0
does not pose a restriction for a CRPC surface due to the indeterminate ratio κ1/κ2 = 0/0, which can assume the correct 
value a when approaching such a point. Since negatively curved surfaces have their singularities of the principal nets at 
flat points, CRPC surfaces with a < 0 appear to be easier to design than those with a > 0. Also note that the rich family 
of minimal surfaces (a = −1) is part of this class of surfaces. However, we do not know of a similarly rich class of CRPC 
surfaces with positive curvature. The case a = 1 leads just to the sphere. A CRPC surface with a > 0 cannot have an umbilic 
(a = 1) unless it is a sphere. This poses a rather strong shape restriction on CRPC surfaces for a > 0. They may, however, 
possess flat points or singular umbilics (κ1 = κ2 = ∞). These points appear on the rotational axis of positively curves CRPC 
surfaces of revolution (see Fig. 5).

2.2. Gaussian image of the C-nets of rotational CRPC surfaces

For an arbitrary CRPC surface s, the characteristic curves intersect the principal curvature lines under the constant angle 
±γ . Hence, their Gaussian images intersect the Gaussian images of the principal curvature lines under the constant angle 
π/2 − γ (if angles are measured against the same principal direction).

This simple observation turns out to be very useful to directly determine the characteristic curves on rotational CRPC 
surfaces s. The principal curvature lines of a rotational surface are its profile curves in planes through the axis (which we 
identify with the x3-axis of a Cartesian system) and its parallel circles (in planes orthogonal to the axis, i.e. x3 = const). 
Throughout the paper we assume that κ1 refers to the normal curvature of the circles and κ2 to the normal curvature of 
the profile curves. The Gaussian images of the principal curvature lines of s are the circles of constant latitude (in planes 
orthogonal to the x3-axis) and constant longitude (in planes through the x3-axis) on the unit sphere S2. The characteristic 
curves c of s intersect the parallel circles of s under constant angle γ . Such curves (for any constant angle) are called 
loxodromes. Their Gaussian normal images intersect the circles of constant longitude (or planes through the x3-axis) under 
the constant angle γ (see Fig. 3). These curves are the well-known spherical loxodromes. A spherical loxodrome n(u), as 
Gaussian normal image of a characteristic curve c(u) can be parameterized via the rotational angle u about the x3-axis as 
(see e.g. Wunderlich, 1950),

n(u) = 1

cosh qu
(− sin u, cos u, sinh qu), q = cotγ = √|κ2/κ1| = 1/

√|a|. (1)

Lemma 1. The Gaussian normal images of the characteristic curves of a rotational CRPC surface are spherical loxodromes and congruent 
to the curve (1).

Of course, the γ -loxodromes on any rotational surface form two families of congruent curves. Curves in one family are 
related to each other by rotation about the axis and the two families are related by a reflection at profile planes. This type 
of congruence also applies in the following statements.
4
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This forms the basis for our further derivations. Since the characteristic curves may either be asymptotic curves or 
conjugate and symmetric to principal directions, we have to distinguish these two cases. However, having done the case 
a < 0, it requires only small changes to obtain the rotational CRPC surfaces with a > 0.

2.3. The asymptotic curves of negatively curved rotational CRPC surfaces

We would like to determine a characteristic curve c(u) on a rotational CRPC surface s with a < 0. Since c is an asymptotic 
curve, its osculating planes are tangent planes of s and thus the Darboux frame of s along c equals the Frenet frame 
e1, e2, e3 of c. The binormal vectors e3 are the normal vectors n of s along c, represented by the spherical loxodrome (1). 
The loxodrome may be called the spherical binormal image of c.

The spherical tangent image e1(u) of c is obtained as follows. We compute the envelope of planes e3(u) · x = 0,

T1(u) : x1 sin u − x2 cos u − x3 sinh qu = 0.

These planes are parallel to the osculating planes of c (tangent planes of s). Their envelope is a cone �1 with vertex o
through the spherical tangent image e1(u). We compute it by intersecting T1(u) with the derivative planes Ṫ1(u). The 
intersection of �1 with the plane x3 = 1 is the curve

e∗
1(u) = (sinh qu sin u + q cosh qu cos u,− sinh qu cos u + q cosh qu sin u,1). (2)

Normalization yields the spherical tangent image e1(u) = e∗
1(u)/‖e∗

1(u)‖.
In other words, the curves e3(u) and e1(u) are related by orthogonality on the spheres S2. It is well-known and easily 

seen that this spherical duality maps a loxodrome e3(u) to a spherical tractrix of the great circle in the plane x3 = 0 with γ as 
the constant pull distance (see e.g. Wunderlich, 1950; and Fig. 3). We have therefore shown the following result:

Lemma 2. The tangent images of the asymptotic curves on rotational CRPC surfaces with a < 0 are spherical tractrices of a great circle 
in the plane orthogonal to the rotational axis. Up to rotation about the axis or a reflection at a plane orthogonal to the axis, these curves 
are represented by e1(u) = e∗

1(u)/‖e∗
1(u)‖ with e∗

1(u) from equation (2).

Remark. This result can also be derived directly with help of the Frenet frame as follows (Fig. 3, left). At any point of c, the 
tangent vector e1 forms a constant angle with the tangent p of the parallel circle (normal of the profile plane). Note that p
lies in the tangent plane of s and thus in the osculating plane of c. Hence, the vector p is fixed in the moving Frenet frame,

p = e1 cosγ + e2 sinγ .

The Frenet frame vectors describe the spherical tangent image e1(u), principal normal image e2(u) and binormal image 
e3(u) on S2. By the Frenet equations, the tangents ė1 and ė3 are parallel to e2. In other words, the great circle defined by 
e1, e2 touches the spherical tangent image e1(u) and the great circle in the plane e3, e2 is tangent to the binormal image 
e3(u). The vector p traces out a great circle cp in a plane orthogonal to the rotational axis. The constant angle between e1
and p implies that the great circular arc between e1 and p has constant spherical length γ and is tangent at e1(u). This 
reveals the spherical tangent image e1(u) as a spherical tractrix of a great circle with γ as the constant pull distance. By 
the way, our asymptotic curves c are generalized curves of constant slope in the sense of Pottmann (1982).

We now determine the asymptotic curves c from the known Frenet frame. Note that the binormals e3 agree with the 
surface normals and lie in the profile planes P (u) : x1 cos u + x2 sin u = 0. Hence, we have to ensure that c(u) also lies in 
P (u). Therefore we represent c as

c(u) = (−r(u) sin u, r(u) cos u,h(u)). (3)

Of course, the cylinder coordinates (r(u), h(u)) are a parameterization of the profile curves of our surfaces s we look for. 
The first derivative vectors of c must be parallel to e1(u) or equivalently e∗

1(u),

(−ṙ sin u − r cos u, ṙ cos u − r sin u, ḣ) = λ(u)e∗
1(u). (4)

This yields the following simple differential equations,

ṙ

r
= 1

q
tanh qu,

r

ḣ
= −q cosh qu. (5)

For the left one, one finds the solution

r = C cosh
1

q2 (qu).

As it is sufficient to determine our surfaces up to similarities, we set C = 1. Also, we note
5
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1

q2
= |a| = −a,

and thus in the following write

r(u) = cosh−a(qu), q = 1/
√|a|. (6)

Thus, we determine the top views of the asymptotic curves via elementary functions. For the third coordinate h(u) we use 
the right equation in (5) and (6) to obtain

h(u) = ±1

q

∫
cosh−a−1(qu)du. (7)

The ± signs are due to the fact that there are two families of asymptotic curves, which are related by a reflection at a 
horizontal plane. This plane is x3 = 0 if we set the integration constant in (7) so that h(0) = 0, and then note the axial 
symmetry of the asymptotic curve c(u) with respect to the x1-axis (h(−u) = −h(u), r(−u) = r(u)).

2.4. Characteristic curves for positive curvature

For a rotational CRPC surface s with a > 0, we consider the developable surface � which is tangent to s along a charac-
teristic curve c(u). Its rulings are conjugate to the tangents of c and therefore characteristic directions as well. The surface �
is the tangent surface of a space curve d(u), the so-called regression curve of �. The tangent planes along rulings of � are 
the osculating planes of d. Hence, the binormal image of d is the normal image n(u), the tangent image of d is a spherical 
tractrix and the tangents of d are parallel to the vectors e∗

1(u) in (2). Characteristic directions are symmetric with respect to 
the principal directions, and thus the tangent vectors of the curve d(u) are obtained from those of c(u) by reflection at the 
corresponding tangent (cos u, sin u, 0) of the parallel circle. This shows that the tangent vectors e1(u) of c(u) are parallel to

ē1(u) = (− sinh qu sin u + q cosh qu cos u, sinh qu cos u + q cosh qu sin u,−1). (8)

Geometrically, one may express this as follows (indicated in Fig. 3, left):

Lemma 3. The tangent images of the characteristic curves on rotational CRPC surfaces with a > 0 are obtained by spherically reflecting 
the points of a spherical tractrix of a great circle at the corresponding points of this great circle. Up to rotation about the axis, these 
curves are represented by e1(u) = ē1(u)/‖ē1(u)‖ with ē1(u) from equation (8).

Remark. Now, the regression curves d of the tangent developables along the characteristic curves c are generalized curves 
of constant slope (Pottmann, 1982).

As before, we represent the characteristic curve in the form (3) and make sure that its first derivative is parallel to ē1(u)

in (8). Hence, we have to replace e∗
1 by ē1 in equation (4) and find the differential equations

ṙ

r
= −1

q
tanh qu,

r

ḣ
= q cosh qu. (9)

With − 1
q2 = −a, this results again in

r(u) = cosh−a(qu), h(u) = ±1

q

∫
cosh−a−1(qu)du.

Let us summarize our results:

Theorem 1. The rotational surfaces with κ1/κ2 = a are parameterized as

s(u, v) = (r(u) cos v, r(u) sin v,h(u)), (10)

where the profile curve representation ((r(u), h(u)) is given by equations (6) and (7). Their characteristic curves u ± v = C have top 
views with an elementary polar coordinate representation (6).

From our parameterization of the profile curves, it is easy to obtain their known graph representation h(r). Using

dh

dr
= ḣ

ṙ
= ±1

sinh(qu)
= ±1√

cosh2(qu) − 1
= ±r1/a

√
1 − r2/a

,

we find
6
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h(r) = ±
∫

r1/a

√
1 − r2/a

dr. (11)

There is a simple direct derivation of this form due to Hopf (1951), described nicely in Kühnel (2013), Ex. 3.27.
It is well-known (see e.g. Strubecker, 1969, pp. 162) that a rotational surface given in the form (10) can be mapped 

conformally to an (X, Y )-plane via

(X, Y ) = (v,

∫ √
ṙ(u)2 + ḣ(u)2

r(u)
du).

For our surfaces, this conformal image is

(X, Y ) = (v, u tanγ ). (12)

Parallel circles and profile curves are mapped to lines parallel to the X-axis and Y -axis, respectively. Loxodromes of s with 
a constant angle ω against the parallel circles are mapped to straight lines with slope tan ω, and therefore expressed as

u tanγ = v tanω.

For ω = γ this shows again that the curves u = v are γ -loxodromes. As is true for any rotational surface, the loxodromes 
to different angles are related to each other by axial fan transformations, in cylinder coordinates expressed by (r, v, h) �→
(r, bv, h) with constant b.

We also see that the parameter change ū := u tanγ yields an isothermic parameterization s(ū, v) of the rotational CRPC 
surfaces.

2.5. Pairs of surfaces with the same absolute value of the principal curvature ratio

It turns out that there is a remarkably simple relation between two rotational CRPC surfaces which belong to principal 
curvature ratios ±a. It becomes most easily accessed if we turn to a characteristic parameterization S(U , V ), where the 
curves U = const and V = const are the characteristic curves.

Noting that in the current representation s(u, v), the preimages of the characteristic curves in the parameter plane are 
the lines u = C ± v , we see that a characteristic parameterization is achieved via the parameter change u = U − V , v = U + V ,

S(U , V ) = s(U − V , U + V ).

This implies

SU = su + sv = (ṙ cos v − r sin v, ṙ sin v + r cos v, ḣ),

SV = −su + sv = (−ṙ cos v − r sin v,−ṙ sin v + r cos v,−ḣ).

We consider now a surface S(u, v) to the constant a and the surface S̄(u, v) to −a. In view of equations (5) and (9), the 
corresponding functions r and h are related by

˙̄r
r̄

= − ṙ

r
,

r̄
˙̄h

= − r

ḣ
,

which yields

S̄U = r̄

r
SV , S̄V = r̄

r
SU . (13)

These relations characterize the two parameterizations as reciprocal parallel (see Sauer, 1970, pp. 177). They show that the 
two surfaces may be seen as membranes in equilibrium and as reciprocal force diagrams of each other (Sauer, 1970, pp. 225), 
which will become more intuitive at hand of the discrete versions in Section 3.4.1.

This mechanical interpretation is closely related to the following one, which relies on relative differential geometry, intro-
duced by Müller (1921). One replaces the Euclidean sphere by another surface 
, usually one with positive curvature, but 
this is not necessary. Then, the Gauss map from a surface S to the relative sphere 
 is defined via parallel oriented tangent 
planes, and relative principal curvatures κr

1, κ
r
2 are the eigenvalues of the (negative) derivative σ r of this map. As long as 

one of the two corresponding points of S and 
 is elliptic (K > 0), there are two real eigenvalues. Obviously curvatures do 
not change if one applies the same affine map to S and 
. Relative minimal surfaces, studied by Müller (1921), are defined 
by 2Hr = κr

1 + κr
2 = 0.

Points of S and S̄ to the same (U , V ) have parallel tangent planes, seen e.g. in equation (13), and thus correspond to 
each other in the relative Gauss map σ r if we view one of them, e.g. S with a > 0, as relative sphere. The eigenvectors of σ r

(relative principal curvature directions) are the Euclidean principal curvature directions. With the Euclidean shape operators 
σ and σ̄ , the relative shape operator is σ r = σ−1 ◦ σ̄ , whose trace vanishes, and thus Hr = 0. We have proved the following 
result:
7
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Fig. 4. Pairs of rotational CRPC surfaces with the same value of |a|. Forces (color) can be assigned to characteristic nets so that such pairs are reciprocal 
force diagrams of surfaces in equilibrium. Left two: Orthogonal system of spherical loxodromes (a = 1), which is a material minimizing structure according 
to Michell, and the reciprocal force diagram aligned with the asymptotic curves on a catenoid (a = −1). Right two: Pair of rotational CRPC surfaces with 
a = ±3, with forces in the interpretation as reciprocal diagrams.

Fig. 5. Rotational CRPC surfaces. Left: a = −2,−3,−4,−5 and a = − 1
5 ,− 1

4 ,− 1
3 ,− 1

2 from outside to inside. Right: a = 3,4, 1
2 , 1

3 .

Theorem 2. Two rotational surfaces S with κ1/κ2 = a and S̄ with κ1/κ2 = −a and parallel axes are reciprocal force diagrams of each 
other (in their characteristic parameterization) and they form a pair of relative minimal surfaces.

Remark. Numerical tests on discrete models (Section 3) indicate that a similar result does not hold for general CRPC sur-
faces. C-nets of CRPC surfaces to a < 0 are A-nets and as such can be brought into equilibrium. There is a family of possible 
reciprocal force diagrams which are related by Combescure transformations (Sauer, 1970). The corresponding nets on the 
reciprocal surfaces are conjugate and isogonal, but in general not principal symmetric. For rotational CRPC surfaces principal 
symmetry follows from rotational symmetry (see also Section 3.4.1). Another case where we get principal symmetry for the 
reciprocal nets is that of minimal surfaces (a = −1). They possess reciprocal orthogonal Q-nets. These are principal nets and 
Combescure transforms of their common Gaussian spherical image. This yields the well-known reciprocal pairs formed by 
an A-net on a minimal surface and an orthogonal spherical net.

2.6. Examples

a = ±1: The simplest examples of rotational CRPC surfaces are the ones when a = ±1, i.e., q = 1. Their characteristic 
curves intersect under a right angle. The case a = 1 characterizes a surface with only umbilics and thus a sphere. Indeed, 
we obtain r = 1/ cosh u, h = tanh u, which is a spherical loxodrome (1) to q = 1. The associated surface a = −1 must be a 
Euclidean rotational minimal surface, i.e. a catenoid: we find r = cosh u, h = −u, and thus the profile is the known catenary 
r = cosh h. This is also in accordance with Theorem 2. The mechanical interpretation of minimal surfaces and spheres as 
reciprocal force diagrams is due to W. Blaschke (see Blaschke, 1930, pp.244). The equilibrium configuration of orthogonal 
spherical loxodromes also appears as a material minimizing form in the seminal paper by Michell (1904) (see Fig. 4, left).

a = −2: With r(u) = cosh2(u/
√

2), h(u) = ±2 sinh(u/
√

2), we obtain 4r − h2 = 4 for the profile. Hence, it is a parabola 
with its directrix as the rotational axis. The resulting rotational surface is of algebraic degree four.

While at first sight this is a bit surprising, it is just a direct consequence of a well-known construction of the curvature 
centers of a parabola, illustrated in Fig. 6. One has to note that the principal curvature centers of a rotational surface at 
a point p are the curvature center f1 of the profile curve at p and the intersection point f2 of the normal at p with the 
rotational axis.

a = 3: γ = π/3, r(u) = cosh−3(u/
√

3), h(u) = ±(3 tanh(u/
√

3) − tanh3(u/
√

3)). This profile curve (r(u), h(u)) is a well-
known rational algebraic curve of order 6 and class 4, namely a special involute of an astroid (see Fig. 7). To verify its 
8
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Fig. 6. A well-known construction of the curvature centers f2 of a parabola (left) from the intersection points f1 of its normals with the directrix A shows 
that the surface obtained by rotating a parabola about its directrix A has a constant negative ratio of principal curvatures κ1/κ2 = −2. We also show the 
evolute of the parabola, which generates the nontrivial part of the focal surface of the CRPC surface.

Fig. 7. The evolute of the profile of a rotational CRPC surface to a = 3 is an astroid. The CRPC surface is algebraic of order 6 and has two singular points on 
the rotational axis. We find this behavior at points of the rotational axis (umbilic with curvature radius 0) for all rotational CRPC surfaces with a > 1.

evolute as an astroid, we compute the intersection points of its tangents with the coordinate axes and find the two points 
(2 cosh−1(u/

√
3), 0) and (0, −2 tanh(u/

√
3)), whose distance equals 2 for all u. Hence, the evolute is the envelope of a 

straight line segment of constant length (red in Fig. 7, left) whose endpoints run on two orthogonal lines. This curve is 
called astroid and has another kinematic generation as path of a point on a circle of diameter 1 which rolls inside a circle 
of radius 2. Since one of the involutes of an astroid is again an astroid, our profile is also an offset of that astroid.

For more examples, in particular higher order algebraic ones, we refer to recent work by Jimenez (2021).

3. Discrete CRPC surfaces

In this section, we study discrete CRPC surfaces based on their characteristic nets. The simple discrete models enable an 
efficient computation and the development of computational tools to explore the shape space of CRPC surfaces.

Our discretization largely follows prior work on special discrete parameterizations (nets). These are the very well stud-
ied asymptotic nets (A-nets) and conjugate nets (Q-nets) (Bobenko and Suris, 2008) and the recently introduced principal 
symmetric nets (Pellis et al., 2020). We describe three different discretizations of the constant angle and also present a 
simple way to compute discrete surfaces which are invariant under uniform motions in the group of similarities (rotational, 
helical and spiral surfaces). A comparison of discrete rotational CRPC surfaces with their smooth counterparts reveals the 
high quality of the discrete models. Moreover, these special CRPC surfaces as well as discrete minimal surfaces are suitable 
starting nets for exploring possible shapes of CRPC surfaces.
9
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Fig. 8. Left: In an S-net, any central vertex s and its four neighbors s1, s2, s1̄, s2̄ lie on a common sphere. Right: Discrete osculating circles of the two discrete 
parameter lines through a vertex. The bisecting vectors e1, e2 of their tangent vectors t1, t2 are the discrete principal directions (images from Pellis et al., 
2020).

3.1. Discrete C-nets

Characteristic nets are regular away from umbilics (including those with curvature 0 and ∞). They are discretized as 
quad meshes which have regular combinatorics (inner vertices of valence 4), apart from isolated combinatorial singularities 
(inner vertices with valence �= 4).

In the following, we restrict to regular discrete nets defined by a map s :Z2 →R3. The discrete parameter lines through 
(u, v) ∈Z2 are polylines s(Z, v) and s(u, Z) which we call u-lines and v-lines like in the smooth case.

When considering local properties of a net around s(u, v), we use the shift notation as in Bobenko and Suris (2008)
(Fig. 8, left):

s = s(u, v), s1 = s(u + 1, v), s2 = s(u, v + 1),

s1̄ = s(u − 1, v), s2̄ = s(u, v − 1), s12 = s(u + 1, v + 1).

Asymptotic nets. In the negatively curved case, characteristic nets (C-nets) are asymptotic nets (A-nets). These are quad nets 
in which all regular vertices have planar vertex stars. This means that the five points s, s1, s2, s1̄, s2̄ lie in a plane. This plane 
is identical with the discrete osculating planes (s1̄ss1) and (s2̄ss2) of the two discrete parameter lines passing through a 
vertex s and it is also the discrete tangent plane at s. This expresses the asymptotic property, since an asymptotic curve of 
a smooth surface is one whose osculating planes are tangent to the surface.

Conjugate and principal symmetric nets. In the positively curved case, a C-net is conjugate and principal symmetric. Conjugate 
nets (Q-nets) are characterized by planar faces (ss1s2s12) (Bobenko and Suris, 2008). Principal symmetry can be expressed 
in two ways (Pellis et al., 2020): one approach (S-nets) is vertex-based and a concept of Möbius sphere geometry and the 
other one is face-based (S∗-nets) and a concept of Laguerre sphere geometry.

S-nets. Here, each vertex star is spherical, i.e., a regular vertex and its 4 connected neighbors s, s1, s2, s1̄, s2̄ lie on a common 
sphere (Fig. 8, left). This sphere expresses principal symmetry of the parameter lines for the following reason: The discrete 
osculating circles of the parameter lines pass through s1̄ss1 and s2̄ss2, respectively (Fig. 8, right) and lie on the sphere 
associated to the vertex. As a sphere tangent to the discrete surface at s and containing the osculating circles, it is the 
common discrete Meusnier sphere of the two parameter lines. Hence, the two parameter lines have the same discrete 
normal curvature κn = 1/r, with r as radius of the sphere. Thus, the discrete tangents t1, t2 of the parameter lines at s
(tangents of the circles) are symmetric to the discrete principal directions e1, e2. Those arise now naturally as the bisectors 
of t1, t2.

Note that A-nets are principal symmetric as well and appear now as limits of S-nets in which the vertex spheres have 
radius ∞, i.e. are planes. We obtain normal curvature κn = 0 for the parameter lines which are therefore asymptotic curves.

3.2. Discrete CRPC surfaces as discrete isogonal C-nets

Having a simple discretization of C-nets at our disposal, we arrive at discrete CRPC surfaces by expressing a constant 
angle 2γ between parameter lines. The targeted constant principal curvature ratio is taken from the smooth case as γ =
arctan

√|κ1/κ2|.
The definition of discrete angles can happen in various ways which we would like to describe now.
10
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Fig. 9. Left: If the vertices of a face in a quad mesh are viewed as image of a square in the parameter plane under a smooth map φ , central parallelograms 
(yellow) define an affine map, which approximates the derivative of φ at the center mP with order O (h2). This results in two simple ways of measuring 
angles between discrete parameter lines in quad meshes. Angle measurement (A1): Given a quad mesh (black), called control mesh, its face diagonals can 
be arranged in two quad meshes (red, blue). Angles between parameter lines in these diagonal meshes are defined as angles between the two diagonals 
in each quad of the control mesh. Angle measurement (A2): Intersection angles between parameter lines in a quad net can also be measured between the 
central lines in each face of the net.

Angles between osculating circles. As illustrated in Fig. 8, right, we can define the angle 2γ as the angle between tangents 
t1, t2 to the discrete osculating circles at a vertex s. This method also works for A-nets and has been applied in Pellis 
et al. (2020), where one finds the details for formulating the angle constraint. It has the advantage of being invariant 
under Möbius transformations. Note that Möbius transformations map S-nets to S-nets, circles to circles, and they preserve 
angles between curves. Hence, this method is attractive when studying isogonal S-nets. However, our focus is on isogonal 
C-nets which are not invariant under Möbius transformations. Moreover, there are computationally simpler ways for angle 
measurement in discrete nets, which we will now describe (see Fig. 9) and which are used in our results.

These methods are based on the following fact (Fig. 9): We view vertices of a quad mesh as images of the standard 
lattice hZ2 with stepsize h under a smooth mapping φ to R3. Then, a face F = (v0, . . . , v3) of the quad mesh corresponds 
to a square P in the (u, v) parameter plane. The edge midpoints of F form a parallelogram Fm whose edges are parallel 
to the diagonals of the quad. This is an immediate consequence of the intercept theorem and sometimes called Varignon’s 
theorem. Edge midpoints of the corresponding square in the parameter plane form a square Pm . The unique affine map 
Pm → Fm is an approximation of the derivative map of φ, evaluated at the center mP of P , with approximation error O (h2). 
This follows from a Taylor expansion of φ at mP (Jiang et al., 2021a). Hence, the partial derivatives of φ are approximated 
via the central lines of F (diagonals of Fm), as

φu(mP ) = 1

2h
(v1 + v2 − v0 − v3) + O (h2), φv(mP ) = 1

2h
(v2 + v3 − v0 − v1) + O (h2).

Likewise, the edge vectors of Fm (diagonal vectors of F ) approximate derivatives of φ in diagonal direction, which has been 
used in recent work (Jiang et al., 2020, 2021b,a) and leads to our first approach:

Angles via diagonal meshes (Fig. 9, A1). One starts with a quad mesh, called control net that needs not fulfill the constraints 
of the specific discretization one has in mind. The actual targeted nets are the two diagonal nets of the control net and the 
constraints (in our case of a C-net) are applied to both of them. The angle between parameter lines is measured in each face 
of the control mesh as the angle between diagonals. Expressing a constant angle and having both diagonal nets as C-nets 
yields discrete CRPC surfaces.

Angles via central lines in quad faces (Fig. 9, A2). The diagonal mesh approach has the slight disadvantage that one designs 
a pair of meshes (diagonal meshes) which are subject to the same constraints, but only one mesh may be needed. In the 
following, we think of a single quad mesh which is our targeted net to which the constraints are applied. Angles between 
parameter lines are now measured between the central lines in a face.

Remark. The latter type of angle measurement for discrete nets has not yet been explored in discrete differential geometry, 
and it is not clear where it provides benefits in the discrete theory. So far, discrete orthogonal nets have been studied 
mostly for Q-nets, which leads to principal nets (Bobenko and Suris, 2008). Discrete orthogonality away from principal 
parameterizations has been addressed at a few places, e.g. for discrete orthogonal geodesic nets (representing discrete 
developable surfaces) (Rabinovich et al., 2018), or their generalizations to discrete geodesic parallel coordinates (Wang et 
al., 2019). Note that right angles between central lines of a quad are equivalent to diagonals of equal length in that quad, 
since edge midpoints form the vertices of a rhombus whose edges have half the length of the diagonals in the quad.

A comparison of the three types of angle measurement is provided in Fig. 10.

3.3. Constraint formulation and numerical optimization

The proposed discrete CRPC surfaces are constrained quad meshes and thus can be computed by known efficient numer-
ical optimization algorithms. We follow the approach of Tang et al. (2014). There, one tries to get along with constraints 
11
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Fig. 10. All three types of angle measurement (1,2,3) lead to very similar results when optimization for a CRPC surface is applied on an initial shape (0), 
here represented by two diagonal meshes of a control mesh. Angles between discrete osculating circles are enforced on both diagonal meshes (1), angles 
between diagonals in faces of the control mesh are applied in (2) and the blue diagonal mesh is optimized with angles between central lines in faces (3). 
Top row: Starting from a sphere, we optimize for a rotational CRPC surface with a = 3. Bottom row: An initial mesh, not representing a CRPC surface, is 
optimized for a CRPC surface with a = 0.45.

that are at most quadratic, even if one has to use auxiliary variables. Constraint solving is based on a nonlinear least squares 
formulation, and optimization is performed with a Levenberg-Marquardt algorithm.

We now show how the various constraints are formulated and point out that in the diagonal net approach the relevant 
constraints have to be applied to both diagonal nets.

A-nets. Planar regular vertex stars are achieved by introduction of unit vertex normals n as additional variables and express-
ing orthogonality to the 4 emanating edges,

n2 = 1, n · (s j − s) = 0, j ∈ {1, 1̄,2, 2̄}. (14)

S-nets. Spherical regular vertex stars are obtained by adding a sphere center c as an additional variable at each vertex s, and 
expressing equal distance of c to the 5 vertices of a vertex star. This means ‖s − c‖2 = ‖s j − c‖2, or

s2 − s2
j + 2(s j − s) · c = 0 j ∈ {1, 1̄,2, 2̄}. (15)

In general it is good to prepare for cases where sphere centers of an S-net can tend to infinity (see Pellis et al., 2020). 
However, we are only dealing with S-nets that are also Q-nets. Those cannot be close to A-nets in some regions, because 
A-nets are not conjugate (asymptotic directions are self-conjugate). The only places in which the spheres may get an infinite 
radius are at discrete flat points which are combinatorial singularities of the net and not subject to the constraints above.

Q-nets. Planarity of a face (ss1s12s2) is expressed with help of an additional face normal vector n f via orthogonality to each 
edge of the face,

n2
f = 1, n f · (s1 − s) = 0,n f · (s12 − s1) = 0,n f · (s2 − s12) = 0,n f · (s2 − s) = 0. (16)

While three orthogonality constraints would be sufficient, the use of four is more symmetric and easier to implement. 
Dependent constraints pose no problems to our numerical solver.

Constant angle. If vavbvcvd is a quad face of the control mesh, the angle constraint based on the use of two diagonal meshes 
is

vc − va

‖vc − va‖ · vd − vb

‖vd − vb‖ = cos 2γ . (17)

The diagonal lengths l1 = ‖vc − va‖ and l2 = ‖vd − vb‖ can be separate variables, constrained via additional variables g1, g2

and dummy variables δi (to achieve li > 0) through the quadratic constraints
12
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vc − va = l1g1, vd − vb = l2g2, g2
i = 1, li = δ2

i , i = 1,2.

Then the angle constraint (vc − va) · (vd − vb) = l1l2 cos 2γ is quadratic. Since we use an iterative algorithm, it is sufficient 
to take li from the previous iteration and avoid these complications.

If we use central lines in the quads of a net for angle discretization, we apply equation (17) to the faces (ss1s2s12) and 
take the points v as edge midpoints,

2va = s + s1, 2vb = s1 + s12,2vc = s12 + s2,2vd = s2 + s.

To achieve an angle 2γ �= π/2 between two straight lines, we have to say where we should have 2γ and where π − 2γ . 
For that, we select one direction (diagonal vector or central vector) in each face consistently over the mesh in a fair manner 
and measure angles in a consistent orientation to the other diagonal or central vector. This requires an even valence for 
all inner vertices, which occurs naturally since the singularities arise from underlying principal nets. For details we refer to 
Jiang et al. (2020); Jimenez et al. (2020).

Summary of constraints. CRPC surfaces with negative curvature a < 0 are subject to the A-net constraints (14) and the chosen 
angle constraint, while for a > 0 they are subject to S-net constraints (15), Q-net constraints (16) and angle constraints. 
Angles via osculating circles or central lines in quad faces work without additional structure. Angles via diagonal meshes 
require as additional structure a control mesh (to which none of the constraints is applied) and the two diagonal meshes, 
to which constraints are applied; angles are measured between the two diagonals in each face of the control mesh. We will 
later add constraints that yield helical or spiral CRPC surfaces and constraints in connection with user editing as a tool for 
design space exploration.

Fairness. Having formulated all constraints, we are not yet ready to set up the objective function of optimization, since 
we have to make sure that we have a discrete model of a smooth surface. This is done by a fairness energy applied to 
the discrete parameter lines of the nets under consideration. For any three consecutive vertices vi, v j, vk of a polyline that 
should be fair (typically s1̄, s, s1 and s2̄, s, s2, but also consecutive vertices of a parameter line in the control mesh of the 
diagonal mesh approach), the term (vi − 2v j + vk)

2 is added to the regularizing part of the objective function. Hence, the 
regularizing part Ereg is just this sum of squared second differences.

Final objective function. The objective function for discrete CRPC surfaces is composed as follows. We consider a vector X ∈Rd

that contains all d variables, including the auxiliary ones. Then, each constraint is written in the form Ci(X) = 0 and the 
objective function reads

F (X) =
∑

Ci(X)2 + μEreg(X) + ε(X − Xc)2, (18)

where Xc is the current value of X in the iterative procedure. This nonlinear least squares problem is solved with the 
Gauss-Newton method, which due to the regularizing third part is a Levenberg-Marquardt algorithm. However, the small 
weight μ of the fairness part fades away in later iterations. The main reason is that this is the only part which does not 
have a zero residual for the final mesh and its presence may act against a better accuracy for the other essential constraints. 
Moreover, Gauss-Newton algorithms have local quadratic convergence for zero residual problems, which one does not want 
to destroy. The small weight ε of the other regularizer does not fade away and ensures a regular linear system even in 
presence of conflicting constraints or an insufficient number of them, which means design freedom in applications. Details 
on the choice of weights and on the performance of optimization are provided in subsection 4.2.

Initialization. Since we have here a nonlinear non-convex optimization problem, the success of numerical optimization also 
depends on a reasonable initialization. For that, we already have some good options: We can start with the parameterization 
(10) of a rotational CRPC surface, and extract a discrete characteristic net by sampling the parameter plane at an axis-aligned 
square grid and taking a diagonal net of that grid (then aligned with lines u ± v = C ). Using the diagonal mesh approach 
for angle measurement, sampling at an axis-aligned grid yields a great choice of the control mesh, since then the diagonal 
meshes will follow characteristic lines. We will see later that this sampling of the smooth solution fulfills our constraints on 
discrete CRPC nets really well. Starting from rotational shapes, we may cut them open and then gradually move away from 
rotational shapes. In the following subsection, we show how to obtain helical and spiral CRPC surfaces, and from those we 
can apply more general editing operations to explore the space of possible shapes (see section 4.3).

During optimization, we may also change the parameter a gradually (not crossing a = 0). This leads to a way for con-
structing negatively curved CRPC surfaces from known orthogonal A-nets representing minimal surfaces (a = −1) and 
positively curved CRPC surfaces from orthogonal spherical nets (a = 1). However, in the latter case combinatorial singu-
larities are likely to pose problems. More details are provided in section 4.3.

3.4. Discrete rotational, helical and spiral surfaces

CRPC surfaces are objects of Euclidean similarity geometry. Here a similarity is defined as composition of a rigid body 
motion and uniform scaling with factor σ �= 0; it is represented by x �→ σ A · x + a with an orthogonal matrix A. Thus 
it is natural to look at those CRPC surfaces which are invariant under a one-parameter group of Euclidean similarities. 
13
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Fig. 11. Radially symmetric nets as reciprocal force diagrams.

Minimal surfaces of that type have been studied (see e.g. Wunderlich, 1952, 1954), but for CRPC surfaces we so far only 
know rotational surfaces. Results on helical and spiral CRPC surfaces are missing. Hence, we will now show how to compute 
discrete models of those and we will use them later as initial shapes for the computation of more general CRPC surfaces.

Discrete CRPC surfaces are constrained meshes, for which we now have to add the constraint of being a discrete helical 
or spiral surface. Hence, we take an arbitrary quad net and derive constraints which make them discrete helical or spiral 
nets. It is easy to get discrete models by including the helical and spiral paths in the representation, but this is not helpful 
here, since we require characteristic parameterizations to express the CRPC property.

We use an approach which has been successful in the reconstruction of rotational, helical and spiral surfaces from 
point clouds (Pottmann and Wallner, 2001; Hofer et al., 2005). There one estimates surface normals and characterizes these 
special surfaces through velocity vector fields of the motions under consideration which are orthogonal to the normals, 
i.e., tangential to the surface. Equivalently, this requires the normals to lie in a so-called linear complex of straight lines 
(helical surface) or line elements (spiral surfaces). Adapting this approach in the present setting is natural since we have 
well-defined discrete surface normals at vertices of C-nets (normal to the sphere or plane passing through a vertex star).

3.4.1. Discrete rotational CRPC surfaces in force equilibrium
Before moving to helical and spiral surfaces, let us briefly address discrete rotational CRPC surfaces. This illustrates the 

previous general discretizations and provides a completely elementary approach to Theorem 2.
Let us recall a basic concept of graphic statics. We consider a mesh and want to assign forces to edges so that we obtain 

a system in equilibrium (see Fig. 11). Each edge with endpoints vi, v j is assigned a scalar wij , with the understanding 
that force wij(vi − v j) is exerted on vi and the opposite force wij(v j − vi) is exerted on v j . Equilibrium requires that in 
the entire mesh the forces acting at each vertex sum to zero. Hence, the forces exerted at a vertex (e.g. the yellow one in 
Fig. 11, left) are also the edge vectors of a closed polygon (yellow in Fig. 11, right). Those closed polygons form the so-called 
reciprocal force diagram. Geometrically, the original mesh, called form diagram, and the reciprocal force diagram are two 
combinatorially dual meshes where corresponding edges are parallel. One speaks of reciprocal parallel meshes (Sauer, 1970). 
The relation between the two diagrams is symmetric: one is a force diagram for the other.

To apply this to our problem, we first consider a planar rotational symmetric net as in Fig. 11, left, and show that there 
is a rotational symmetric reciprocal force diagram as in Fig. 11, right. We start with a single vertex and assign forces to the 
emanating edges 1, 2, 3, 4 with help of a quad 1̄, ̄2, ̄3, ̄4 whose edges are parallel to 1, 2, 3, 4. Up to irrelevant translations, 
this leaves us with two degrees of freedom. We use them to choose the quad 1̄, ̄2, ̄3, ̄4 in a symmetric way, so that its edges 
are seen from a center under the same angle θ as in the original radial arrangement (Fig. 11, right). In this way, we can 
continue and draw a radially arranged reciprocal diagram.

This yields a simple relation between the lengths of corresponding edges and their radial distances. Let us define the 
radial edge distance as the distance of the edge midpoint to the rotation center. Then, as illustrated for the edge pair 66̄ in 
Fig. 11, corresponding edge vectors ei, ̄ei and radial distances ri, ̄ri are related due to similar triangles by

ēi = r̄i

ri
ei . (19)

This is essentially already the discrete version of equation (13). We just have to move into 3-space, take a radially arranged 
A-net s and construct the reciprocal net s̄ via parallel edges as in the 2D case. Note that vertex stars in the A-net s are 
planar and thus faces in the reciprocal net s̄ are planar. In the projection into a plane orthogonal to the rotational axis (top 
view), we have the 2D situation of Fig. 11. Due to the radial symmetry both nets are principal symmetric. They are also 
S-nets: the sphere center associated with vertex v lies in the plane connecting v with the rotation axis. If s is isogonal in 
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Fig. 12. Two sequences of helical CRPC surfaces, computed from a discrete rotational CRCP surface by gradually increasing the pitch p. In each sequence a
is constant, left: a = −3, right: a = 3.

any discrete angle measurement, also the parallel net s̄ is to be seen as isogonal, although the definition of discrete angle is 
not exactly the same. A face-based angle measurement in s yields a vertex-based angle measurement for s̄. We have found: 
If s is a discrete rotational CRPC surface with characteristic angle 2γ , then the reciprocal surface is a discrete rotational CRPC surface 
of positive curvature with the same characteristic angle 2γ . Equation (19) is also valid in space, since corresponding edges are 
parallel. Hence, their length ratio is also seen in the top view and radial distances appear there without distortion. Fig. 11
shows that one of the two families of discrete parameter lines is in tension and the other in compression. This and the force 
relation (19) are well seen in Fig. 4.

3.4.2. Discrete helical surfaces
A one-parameter rigid body motion maps points x0 ∈R3 according to x(t) = a(t) + A(t) · x0, with a rotation matrix A(t). 

The velocity vectors v(x) = ẋ(t) attached to the points x form a linear vector field of the form

v(x) = c̄ + c × x.

We are interested in uniform motions. They have a time-independent velocity field, i.e. the angular velocity vector c and the 
origin’s velocity c̄ are constant. For c = 0 one has a pure translation. For c �= 0, we obtain a rotation about an axis if c · c̄ = 0
or otherwise a helical motion with pitch p = (c · c̄)/c2. It is composed of a rotation about an axis A (direction vector c, 
momentum vector c̄ − pc) and a translation parallel to A, where a rotational angle φ corresponds to a translation distance 
pφ (see e.g. Pottmann and Wallner, 2001).

A helical surface is swept by a profile curve cp undergoing a helical motion. It contains the paths of all points of cp . 
As velocity vectors are tangent to the paths, they are also tangential to the surface. Hence, a helical surface s(u, v) with 
normals n(u, v) fulfills the constraint

(c̄ + c × s) · n = 0.

With Plücker coordinates (n, n̄) = (n, s × n) of the normal line at s, one can rewrite this as

c̄ · n + c · n̄ = 0, (20)

expressing the known characterizing property of a helical surface, namely that its normals lie in a linear line complex. For 
p = c · c̄ = 0, we obtain a rotational surface. There, (20) expresses that the surface normals intersect the axis of rotation 
or are parallel to it (see e.g. Pottmann and Wallner, 2001). Constraint (20) can directly be applied to any discrete net with 
vertices s and normals n at vertices, in particular to C-nets.

For our application, we can adapt the coordinate system by choosing the helical axis as the third coordinate axis. 
Moreover, we may use an angular velocity ω = ‖c‖ = 1, so that c = (0, 0, 1) and c̄ = (0, 0, p). With n = (n1, n2, n3) and 
s = (s1, s2, s3), this yields the very simple constraint

pn3 + s1n2 − s2n1 = 0. (21)

Fig. 12 shows two examples, where we start from a discrete rotational CRPC surface, cut it open and gradually increase the 
pitch p in our optimization to obtain discrete helical CRPC surfaces. Figs. 13, 14 and 15, left, show discrete helical surfaces 
with their C-nets and also a family of helical paths on these surfaces. They are not directly used in the computation and 
visualize that one obtains helical surfaces with high precision.

3.4.3. Discrete spiral surfaces
Now we generalize rigid body motions to equiform motions, where uniform scaling is added to the moving system. With 

a scaling factor α(t) and rotation matrix A(t), points are now moved via x(t) = a(t) + α(t)A(t) · x0 and the velocity field 
becomes
H. Wang and H. Pottmann Computer Aided Geometric Design 93 (2022) 102074
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Fig. 13. Discrete helical and spiral CRPC surfaces with a = −1, −2, −1, their isogonal A-nets (blue) and selected motion trajectories (red). The spiral surface 
in the middle is symmetric to the invariant plane (through spiral center and normal to the spiral axis), while the spiral minimal surface on the right hand 
side is of a general type.

Fig. 14. Discrete helical CRPC surfaces with a = −3 and decreased pitch p = 0.3, 0.2, 0.1, 0.05. The boundary curves of the surfaces arise from the used 
control net and are diagonal to the net of characteristic curves.

Fig. 15. Discrete helical CRPC surfaces (left two) and spiral CRPC surfaces (right two), with isogonal C-nets and motion trajectories (red).
16
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Fig. 16. Agreement of smooth (black) and discrete (white) rotational CRPC surfaces. (a),(c): Initial control meshes (for the diagonal mesh approach to discrete 
angle measurement) are extracted from the smooth surfaces by sampling the parameter plane at an axis-aligned square grid. (b),(d): Optimization towards 
exact fulfillment of our discrete CRPC surface constraints leads to tiny changes only. The Hausdorff distances of vertices in the optimized mesh to the 
smooth surfaces are 6.8e-5 and 1.8e-4, respectively (where diagonals of surface bounding boxes have length 1).

v(x) = c̄ + c × x + gx.

Among the uniform equiform motions, characterized by a time-independent velocity field, we are interested in the most 
general ones, known as spiral motions (Wunderlich, 1967). A spiral motion fixes a point f (i.e. v(f) = 0), called center, and 
moves points of a line A, called spiral axis, along A. Center and Plücker coordinates (a, ̄a) of the axis are computed as

f = 1

g(c2 + g2)
(gc × c̄ − g2c̄ − (c · c̄) · c),

(a, ā) = (c,
1

c2 + g2
(c2c̄ − (c · c̄)c + gc × c̄)).

For g = 0, f is at infinity and the spiral motion turns into a helical motion. If we choose c = (0, 0, 1), ̄c = (0, 0, p), then A is 
the x3-axis, f = (0, 0, −p/g), and the spiral motion reads

x(t) = eg t

⎛
⎝cos t − sin t 0

sin t cos t 0
0 0 1

⎞
⎠ · (x0 − f) + f. (22)

A curve undergoing a spiral motion generates a spiral surface. The complete spiral surface is moved in itself under the 
generating equiform motion and is in this sense an invariant surface. Spiral surfaces appear in nature due to exponential 
growth, for example in the form of certain shells (Hofer et al., 2005).

A characterization of a spiral surface follows the same principle as used for helical surfaces. Velocities are orthogonal to 
surface normals,

(c̄ + c × s + gs) · n = 0.

With extended Plücker coordinates (n, n̄, ν) = (n, s × n, s · n) of the normal line element at s (normal line plus the point s
on it), one can rewrite this as

c̄ · n + c · n̄ + gν = 0, (23)

expressing that the normal line elements belong to a linear complex of line elements. For a treatment of line element 
geometry, we refer to Odehnal et al. (2006).

In our computations, we always used c = (0, 0, 1), ̄c = (0, 0, p). One way to generate spiral CRPC surfaces is to start from 
helical CRPC surfaces, fix p and gradually change the value of g from 0 in small steps to a certain value g∗ . In this way the 
spiral center f moves from the ideal point of the x3-axis A to a targeted point f = (0, 0, −p/g∗) on the spiral axis A. The 
plane-symmetric types of negatively curved spiral CRPC surfaces (Fig. 13, middle) can be generated from rotational CRPC 
surfaces which are symmetric with respect to x3 = 0. The origin takes the role of the spiral center f. We set p = 0 and then 
gradually increase the spiral parameter g .

4. Results and discussion

4.1. Checking the quality of discrete models

The explicit results on smooth rotational CRPC surfaces provide a test scenario for the quality of our geometric discretiza-
tion. Fig. 16 compares smooth rotational CRPC surfaces with their discrete counterparts, revealing an excellent agreement.
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Fig. 17. Alignment of isolines of principal curvatures κ1 and κ2, respectively (blue,red) on two discrete CRPC surfaces. The estimated principal curvature 
values yield points on the correct straight lines in the (k2, k1)-plane.

Table 1
Optimization statistics to selected Figures of different complexity.

Fig. |vertices| |variables| T/iter err=F (Xmin)

13-left 6231 101320 4.71 s 7.1e-8
15-right 2856 76625 2.99 s 6.8e-9
17-left 6330 85963 4.83 s 1.4e-12
17-right 6755 160732 8.12 s 2.1e-11
19-top left 1520 20161 5.83 s 3.7e-14
20-right 4244 55481 2.77 s 3.9e-10
18-3rd 6231 101320 4.21 s 1.5e-11
21-2nd row-right 2085 26836 0.83 s 1.5e-12
21-3rd row-left 6330 85963 4.88 s 1.4e-12
21-4th row-right 3254 42907 1.60 s 2.1e-15
22-top left 3010 40383 1.60 s 2.9e-12

Fig. 17 checks the quality of the presented discrete CRPC surfaces with the fact that on a Weingarten surface (to any 
relation f (κ1, κ2) = 0), the isolines of κ1 agree with those of κ2. Also, we demonstrate that the relation is the correct one, 
since points (κ1, κ2) nicely arrange along straight lines κ1 = aκ2 in the plane. Curvatures have been estimated via normal 
cycles (Cohen-Steiner and Morvan, 2003).

4.2. Implementation details and parameters

The algorithms have been implemented in Python and tested on an Intel Xeon E5-2687W 3.0 GHz processor. Typically 
around 10-15 iterations have been necessary to achieve convergence, depending on the quality of the initialization. In all 
examples, we set ε = 0.001. The fairness weight μ is set to 0.005 during the first 5-10 iterations and we use μ = 0 in the 
last 5 iterations. For all meshes, the length of the bounding box diagonals equals 1. Further details are provided in Table 1.

4.3. Exploring the shape space of general CRPC surfaces

Let us now play a bit with the available tools to get some initial ideas about the shape variety in the space of all CRPC 
surfaces.

Computational design of CRPC surfaces with a freeform appearance can start from the special ones discussed above. 
This is illustrated in Fig. 19 with a design tool that allows the user to select some mesh vertices and move them to new 
locations. These may be conflicting with the CRPC constraints and are therefore implemented as soft constraints. We simply 
add the squared distance of original and target location, multiplied with a small weight, to the objective function and let 
the weight fade away in later iterations.

Another way to get a larger shape is by joining pieces of CRPC surfaces and optimizing the resulting mesh so that initial 
defects along the joints disappear (see Fig. 20).

An interesting question concerns the shape space of minimal surfaces within the larger space of CRPC surfaces. Can one 
start with an orthogonal A-net (a = −1) and continuously walk away from that shape by changing the value of a? The main 
question is whether one can keep the combinatorics of the net. Our experiments have been successful (see Figs. 18 and 
21), even with high numerical accuracy (Table 1). The A-nets in Fig. 21 have been obtained by taking S-conical minimal 
surfaces (Bobenko et al., 2015) as initial control nets. It remains open whether or under which conditions a minimal surface 
of given combinatorics of its A-net (principal net) can be turned into a CRPC surface of the same combinatorics by gradually 
changing the principal curvature ratio a.
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Fig. 18. Discrete negatively curved CRPC surfaces with selected curvature isolines, obtained from a discrete minimal surface (A-net with 2γ = 90◦) by 
keeping the mesh combinatorics and optimizing for other angles in the A-net.

Fig. 19. Modeling CRPC surfaces through mesh editing. We start from meshes representing rotational CRPC surfaces (top left: γ = 38.5◦ , bottom left: a = 2) 
and drag some vertices to new locations. The curvature ratio a is fixed and the shown meshes are the control meshes for the diagonal mesh approach.

Fig. 20. Discrete CRPC surfaces, optimized after joining copies of smaller CRPC meshes. Left: a = 0.45, initial piece from Fig. 1. Center: a = 1/3, initial shape 
from Fig. 17, right. Right: Input mesh obtained from Fig. 18 with 2γ = 60◦ by cutting it, joining four copies and editing the whole shape.

4.4. Singularities

Looking at our parts of helical CRCP surfaces with a > 0 (Fig. 12 and Fig. 15), one might ask how these surfaces can be 
extended towards the helical axis. The answer is that they develop singular curves, which are of course helices. We cannot 
show them in our discrete approach, since extension towards and beyond a singular curve is prevented by the fairness term. 
However, in our ongoing research we obtained a parameterization of helical CRPC surfaces from which we can derive the 
existence of singular curves. Most likely, these are also present in more general positively curved CRPC surfaces.
H. Wang and H. Pottmann Computer Aided Geometric Design 93 (2022) 102074
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Fig. 21. Discrete CRPC surfaces obtained from selected classical minimal surfaces (center) by changing the angle γ in the A-net.
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Fig. 22. Asymptotic gridshells, formed by developable surface strips with a straight development, that are attached orthogonally to negatively curved CRPC 
surfaces along selected asymptotic curves. Top: Gridshells from minimal surfaces, a = −1. Bottom: Gridshell with node angle π/3, a = −3. Even in this 
coarse discrete model for the strips, their development is nearly straight.

Another type of singularities to be discussed are those of the C-nets. In the smooth setting, they correspond to umbilics. 
For surfaces different from the sphere (a �= 1), they can only be flat points (κ1 = κ2 = 0) or isolated singular points (κ1 =
κ2 = ∞). The behavior of Weingarten surfaces, in particular CRPC surfaces, at umbilics has been studied by Hopf (1951)
under the additional assumption that the surfaces are analytic. There, he found that a closed CRPC surface can only have 
topological genus 0 and – if different from a sphere – it has exactly two flat points and a = (2n + 1)±1, n ∈ N . The only 
known surfaces of that type are rotational. We used our discrete model for a simple experiment with the goal to obtain 
discrete closed non-rotational CRPC surfaces. Initializing from a discrete rotational CRPC surface with a = 1/3 and editing 
it by relocating some mesh vertices (but keeping the surface closed) the algorithm always converged to a rotational shape, 
even when removing a small cap around the two mesh singularities. Maybe closed CRPC surfaces are always rotational?

In the discrete setting, the singularities of the net correspond to extraordinary vertices (valence �= 4). As for principal 
meshes, their valence has to be even if all faces around them are quads. We do not apply constraints there. We also do not 
use fairness terms to three consecutive points where the middle one is an extraordinary vertex.

4.5. Applications in architecture and design

A straight strip of flat material which can be bent but not stretched can be attached orthogonally to a surface only 
along an asymptotic curve. This has already been pointed out by Finsterwalder (1899) and forms a basic ingredient to the 
asymptotic gridshells of Schling (2018). Since negatively curved CRPC surfaces are isogonal A-nets, they are appropriate 
reference surfaces for asymptotic gridshells with a constant node angle (see also Jiang et al., 2020). Fig. 22 shows examples 
computed with our design tool. The one on the upper right is not meant as an architectural structure, but an artistic 
design.

Discrete C-nets for positively curved CRPC surfaces are quad meshes with planar faces that can form the basis of architec-
tural skins. Due to the constant angle and principal symmetry they have an appealing and well-balanced visual appearance 
(Fig. 1) that may be preferred over structures from principal meshes. An example of a built structure with a principal 
symmetric arrangement of flat quad panels on a rotational surface is provided by the Osaka Maritime Museum.
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4.6. Conclusion and future research

We showed that characteristic nets are well suited for studying and computing CRPC surfaces, since these are charac-
terized through isogonal C-nets. In the smooth setting, this led to a few additional insights on the known rotational CRPC 
surfaces. We then focused on discrete CRPC surfaces and introduced an approach for their computational design.

There is a simple extension of CRPC surfaces which we did not mention so far. It concerns the offsets of CRPC surfaces. 
Since a surface and all its offsets share their principal curvature centers at corresponding points, the offsets of CRPC surfaces 
are Weingarten surfaces with a linear relation aρ1 + bρ2 = c between their principal curvature radii ρi = 1/κi . Discrete models 
are most easily obtained by offsetting discrete CRPC surfaces via their discrete normals (through sphere centers). The offsets 
of C-nets are however no longer C-nets.

Since CRPC surfaces did not yet receive much interest, there are many directions for future research, including the 
following ones.

(1) So far, the only known explicit representations of CRPC surfaces concern rotational ones. Recently, we could also solve 
the ordinary differential equation for helical CRPC surfaces, not using a characteristic parameterization. Maybe one can 
even handle the more involved case of spiral CRPC surfaces, but there is nothing beyond these special surfaces.

(2) We hope that our tools will help to get a better understanding of the possible shapes of CRPC surfaces and will lead to 
conjectures for deeper mathematical studies. We raised the questions of closed CRPC surfaces, where we failed to get 
discrete ones beyond rotational shapes. We also pointed to the probably always present singular curves in more general 
CRPC surfaces of positive curvature.

(3) Another question concerns the shape space of negatively curved CRPC surfaces which contains the minimal surfaces. 
Can we move away from a minimal surface by changing to a �= −1, and can we keep the combinatorics of the C-net, as 
it worked numerically in Figs. 18 and 21?

(4) Again looking at the special case of minimal surfaces, can CRPC surfaces be generated from a given boundary? A 
computational approach to this problem would benefit from a discrete model that is not relying on a special geometric 
parameterization like ours.

(5) While there is a wealth of results on the discrete theory of A-nets (Bobenko and Suris, 2008), we are not aware of 
similar studies for S-nets, or at least for C-nets in the case of positive curvature (Q-nets + S-nets).

(6) For architectural applications one also needed to study force equilibrium under the influence of gravity and the geom-
etry of the supporting structure, especially for realizations as in Fig. 1.
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