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A B S T R A C T

To represent smooth geometric shapes by coarse polygonal meshes, visible edges of-

ten follow special families of curves on a surface to achieve visually pleasing results.

Important examples of such families are principal curvature lines, asymptotic lines or

geodesics. In a surprisingly big amount of use-cases, these curves form an orthogo-

nal net. While the condition of orthogonality between smooth curves on a surface is

straightforward, the discrete counterpart, namely orthogonal quad meshes, is not. In

this paper, we study the definition of discrete orthogonality based on equal diagonal

lengths in every quadrilateral. We embed this definition in the theory of discrete dif-

ferential geometry and highlight its benefits for practical applications. We demonstrate

the versatility of this approach by combining discrete orthogonality with other classi-

cal constraints known from discrete differential geometry. Orthogonal multi-nets, i.e.

meshes where discrete orthogonality holds on any parameter rectangle, receive an in-

depth analysis.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

Representing smooth surfaces by coarse polygonal meshes in2

a visually pleasing way is a challenging task that is particularly3

important in Architectural Geometry [1]. There, visible edges4

of polygonal meshes often follow families of special curves in5

the underlying surface. Finding consistent discrete analogues of6

these curves is essential for the construction and optimization7

of the polygonal meshes. From a methodological perspective,8

there is a close relation to Discrete Differential Geometry [1, 2].9

A property shared by the vast majority of curve networks10

of interest is orthogonality, examples being principal curvature11

lines, principal stress lines, the asymptotic lines in a minimal12

surface or geodesic lines in a developable surface. While the13

concept of orthogonality is straightforward in the smooth set-14

ting, it is not for discrete structures. Clearly, in a discrete ver-15

sion of an orthogonal curve network, not all angles can be 90◦.16

For a fine mesh, they may be close to a right angle, but for17

coarser meshes this is certainly not true. Thus, the question of18

how to discretize orthogonality is a valid one. Within Discrete19

Differential Geometry, the predominant orthogonal structures20

are circular meshes [2] and conical meshes [3]. They come with21

an extensive theory but are only applicable to meshes with pla- 22

nar faces. Hence, they are always discrete principal curvature 23

parametrizations. 24

A recent development in the realm of Discrete Differential 25

Geometry is to define discrete structures through a pairing of 26

meshes which has been used in [4, 5] to successfully discretize 27

the system of confocal quadrics. The checkerboard pattern ap- 28

proach of [6, 7] following on earlier work by Kenyon [8] is 29

equivalent to the mesh pairing and has been used to discretize 30

isothermic surfaces in [9]. The mesh pairing approach to dis- 31

crete principal curvature line parametrization generalizes and 32

unifies the theory behind circular and conical meshes [10]. Sim- 33

ilarly, the mesh pairing approach to Koenigs nets [11] general- 34

izes and unifies the common discretizations of Koenigs nets by 35

[12] and [13] as stated in [9]. This indicates the potential of the 36

approach. However, using it for practical applications is tedious 37

as one usually does not want to deal with two meshes at the 38

same time representing the same shape. Taking the equivalent 39

approach of checkerboard patterns, one is forced to work with 40

parallelograms in every second face and boundary matching be- 41

comes particularly difficult. We overcome these difficulties by 42

http://www.sciencedirect.com
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using the mesh pairing approach to first model rhombic nets.1

Then, by interpreting the two rhombic nets as the two diagonal2

nets of an orthogonal net, we obtain a natural discrete version3

of orthogonality. It boils down to the simple condition that the4

diagonals in every quadrilateral are of equal length. The same5

orthogonality condition has been used in [14, 15] but did not6

receive an in-depth treatment there.7

This discrete version of orthogonality has the following prop-8

erties which make it attractive for applications:9

• It is applicable to arbitrary quad meshes.10

• One works with only one mesh in contrast to the mesh11

pairing approach and there are no problems with boundary12

alignment.13

• It is a simple distance constraint which is easily incorpo-14

rated into numerical optimization. Being a quadratic con-15

straint, it works well with Gauß-Newton algorithms. There16

is no need to use additional auxiliary variables to achieve17

quadratic constraints (which would be necessary for circu-18

lar meshes [2] or conical meshes [3]).19

The contribution of this paper is twofold. On the one hand,20

we motivate the orthogonality constraint through rhombic mesh21

pairings (Section 2) and discuss the appearance of this con-22

straint in classical geometry (Section 3). We find that Ivory’s23

Theorem guarantees the existence of special structures, which24

we refer to as orthogonal multi-nets. These orthogonal multi-25

nets and their design space are studied in Section 3.1 and 3.2.26

A local version of multi-nets can be used as a regularizer in op-27

timization methods as described in 3.3. On the other hand, we28

present an overview of the different use-cases of the orthogo-29

nality constraint showcasing the versatility of the approach in30

Section 4. The discrete structures accessible through this ap-31

proach include principal curvature lines, orthogonal geodesic32

nets and orthogonal Chebyshev nets on developable surfaces,33

asymptotic nets on minimal surfaces, principal symmetric nets34

on CMC surfaces and principal stress nets, see Tab. 1.35

Fig. 1. Discrete orthogonality of the light grey mesh is characterized via

the two diagonal meshes (blue). In each face of the discrete orthogonal

mesh the two diagonals are of equal length and thus form a rhombic mesh

pairing. The medial lines of the orthogonal mesh are depicted in red. They

intersect orthogonally in every face. The zoom highlights the equivalence

of orthogonal medial lines and diagonals of equal length.

2. Rhombic mesh pairings and discrete orthogonality 36

Throughout this paper we deal with quadrilateral meshes of 37

grid-combinatorics that are parameterized over a rectangular 38

portion of the Z2-lattice. However, different regular meshes can 39

be joined to form patches with singular vertices. We denote a 40

vertex of a mesh by vk,l and its corresponding neighbours by 41

vk±1,l, vk,l±1. We refer to the polyline parameterized by i 7→ vi, j 42

as the j-th horizontal parameter line H j of a mesh and likewise 43

to Vk as the k-th vertical parameter line. We consider a mesh to 44

be a discretization of a network of smooth curves on a surface 45

to which we refer as net. 46

M2

M1

Fig. 2. The blue mesh M1 is dual to the

grey mesh M2. Together they consti-

tute an orthogonal mesh pairing as cor-

responding edges are orthogonal.

Mesh pairing. A mesh pairing is defined via two combinato- 47

rially dual meshes, compare Fig. 2. Let M1 : G → R
3 be a 48

mesh defined on a quad graph G and let M2 : G∗ → R
3 be a 49

mesh defined on the dual graph G∗. We call (M1,M2) a mesh 50

pairing. Every vertex of M1 can be associated with a face of M2 51

and vice versa. Moreover, for every edge of M1 there is a corre- 52

sponding edge of M2. We view both meshes as a discretization 53

of the same smooth surface. Geometric properties related to 54

first order derivatives are encoded in the relation of correspond- 55

ing edges, while properties related to second order derivatives 56

like conjugacy are encoded in the faces of the meshes and can 57

be associated with the corresponding vertices [6]. For example, 58

one can say that a mesh pairing (M1,M2) is orthogonal if corre- 59

sponding edges of M1 and M2 are orthogonal. The mesh pairing 60

is conjugate if all faces of M1 and M2 are planar, which is the 61

usual definition for discrete conjugacy of a quad mesh, see [2]. 62

In that case, the face normals of M1 are the vertex normals of 63

M2 and vice versa. However, since we want to deal with one 64

mesh only eventually, we are not interested in orthogonal mesh 65

pairings but in rhombic mesh pairings. 66

Definition 1. A mesh pairing (M1,M2) is rhombic, if and only 67

if corresponding edges of M1 and M2 are of equal length. 68

The connection to orthogonality is motivated by the following 69

lemma. 70

Lemma 2. The parametrization of a smooth surface ϕ : R2 → 71

R
3 is orthogonal (i.e. ∂uϕ ⊥ ∂vϕ) if and only if the diagonal 72

parametrization ψ(u, v) := ϕ(u+v, u−v) is rhombic (i.e. ∥∂uψ∥ = 73

∥∂vψ∥). 74

A given mesh pairing (M1,M2) defines a unique mesh M such 75

that M1 and M2 are its diagonal meshes. We define M to be 76

discrete orthogonal if (M1,M2) is rhombic. Consequently, we 77

obtain the following definition: 78
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Table 1. Overview of orthogonal nets studied in this paper.

Additional constraint to an orthogonal mesh Yields a discrete version of Features

Allows a torsion-free

support structure;

has nearly rectangu-

lar panels; has high

visual smoothness

Conjugacy expressed by planar quadrilaterals Principal curvature lines (Fig. 8,9,10,11)

The mesh can be iso-

metrically deformed

into the plane and

thus be build from

planar deformable

pieces.

A geodesic net defined by opposite angles being equal Developable surface

A Chebyshev net defined by constant edge lengths Developable surface (Fig. 13,14)

A gridshell with

straight lamellas on a

minimal surface.

An asymptotic net expressed by planar vertex stars Minimal surfaces (Fig. 15, 16)

A gridshell with cir-

cular lamellas on a

surface of constant

mean curvature.

Principal symmetric net expressed by spherical vertex stars CMC surfaces (Fig. 1,17,18)

A gridshell with effi-

cient material usage.

Vertices in equilibrium with vertical loads Principal stress net (Fig. 19,20)

Definition 3. The mesh M is orthogonal if and only if the diag-1

onals in every quadrilateral are of equal length.2

Discrete orthogonality manifests itself as well in every quadri-3

lateral through the medial lines, which are the lines connecting4

midpoints of opposite edges. See Fig. 1 for the relation of an5

orthogonal mesh, its diagonal meshes and the medial lines.6

Lemma 4. The medial lines of opposite edges in a quadrilat-7

eral are orthogonal if and only if the diagonals of the quadri-8

lateral have equal length.9

From a numeric point of view, using medial lines is appeal-10

ing due to their good approximation properties as the follow-11

ing argument shows. The vertices of a mesh can be seen as12

the sampling of a smooth surface parametrization ϕ(u, v), i.e.13

vk,l = ϕ(ϵk, ϵl). The edges of the mesh can be seen as dis- 14

crete tangents. However, they approximate the smooth tangents 15

best at the midpoints ϕ(ϵk + ϵ
2
, ϵl) and ϕ(ϵk, ϵl + ϵ

2
) and not 16

at the vertices vk,l = ϕ(ϵk, ϵl). Hence, they are unfavorable 17

for approximating the angle ∡(∂uX(u, v), ∂vX(u, v)). In con- 18

trast, the two medial lines of the quadrilateral with vertices 19

vk,l, vk+1,l, vk+1,l+1, vk,l+1 both approximate the smooth tangents 20

by order O(ϵ2) in the same point, namely ϕ(ϵk + ϵ
2
, ϵl + ϵ

2
). 21

Therefore, the angle of medial lines approximates the angle of 22

tangents in the smooth parametrization by order O(ϵ2) as well. 23

This concept is, of course, not restricted to orthogonal meshes 24

only. Any angle between medial lines could be prescribed, but 25

the concise formulation via diagonal length only works for or- 26

thogonality. 27

One great advantage of this approach is that in contrast to 28

other prominent versions of discrete orthogonal meshes such 29
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as circular meshes [2] or conical meshes [3], it works for non-1

planar quadrilaterals as well. From a Discrete Differential Geo-2

metric point of view, meshes with planar quadrilaterals resem-3

ble conjugate nets. Hence, the requirement of planarity on top4

of orthogonality limits the choice of possible nets substantially,5

as the only curves that are orthogonal and conjugate are the6

principal curves on a surface (see section 4.1 for more details).7

Another great advantage is the simplicity of the constraint. As8

the constraint is only quadratic, standard Gauß-Newton meth-9

ods for optimization are applicable. Last but not least, this or-10

thogonality constraint still leaves a high degree of freedom for11

the mesh, which allows the coupling with other constraints as12

one would expect coming from the smooth theory.13

3. Ivory’s theorem and orthogonal multi-nets14

The famous Theorem of Ivory [16] is closely related to our15

definition of orthogonality.16

Theorem 5. The diagonals in a quadrilateral formed by arcs17

of confocal conics have equal length (compare Fig. 3).18

Fig. 3. Ivory’s theorem: Diagonals in any quadrilateral formed by confocal

conics are of equal length. The same holds true in the system of confocal

quadrics.

Ivory’s theorem tells us that the intersection points of a fam-19

ily of confocal conics span an orthogonal mesh in the plane.20

Meshes generated that way exhibit a special kind of orthogo-21

nality. Namely, they are discrete orthogonal multi-nets, in the22

definition of a multi-net according to [17]. This means that the23

diagonals in any combinatorial rectangle are of equal length:24

∥vk,l − vi, j∥2 = ∥vk, j − vi,l∥2 ∀i, j, k, l. (1)

One can think of orthogonal multi-nets as being orthogonal25

independently of the sampling density. If the vertices {vi, j :26

0 ≤ i ≤ m, 0 ≤ j ≤ n} form an orthogonal multi-net then27

any subset of the form {vi, j : i ∈ I, j ∈ J} for I ⊂ {0, . . . ,m}28

and J ⊂ {0, . . . , n} is the vertex-set of an orthogonal mesh as29

well. This allows for changing the grid-size of the mesh while30

preserving the orthogonality property.31

An orthogonal multi-net is highly over-determined. The ex-32

istence of such meshes is non-trivial and, in fact, the only or-33

thogonal multi-nets in the plane are the meshes generated by34

confocal conics. Hence, the parameter lines of any orthogonal35

multi-net in the plane lie on confocal conics. The situation in36

three-dimensional space is similar. The only volumetric meshes37

with the Ivory property in every cell are the ones generated by 38

confocal quadrics [18]. This holds both in the smooth case as 39

well as in the discrete case (see Fig. 3). The only surfaces that 40

allow for a parametrization with the Ivory property are the Li- 41

ouville surfaces [19]. We can think of an orthogonal multi-net 42

as a discrete version of a Liouville surface with the only differ- 43

ence being that we measure distance in the ambient space and 44

not the geodesic distance inside the surface. 45

3.1. Properties of orthogonal multi-nets 46

In this section, we give a short analysis of all meshes with

the multi-net property that will lead us to an easy construction

method. We evaluate Eq. (1) for two rectangles with the same

horizontal parameter lines H j and Hl sharing one vertical edge,

i.e. we choose the indices i, j, k1, l and i, j, k2, l,

∥vi, j − vk1,l∥2 = ∥vi,l − vk1, j∥2,
∥vi, j − vk2,l∥2 = ∥vi,l − vk2, j∥2.

Taking the difference of the two equations yields

2vi, j ·
(

vk2,l − vk1,l

)

+ ∥vk1,l∥2 − ∥vk2,l∥2

=2vi,l ·
(

vk2, j − vk1, j

)

+ ∥vk1, j∥2 − ∥vk2, j∥2.

As all quadratic terms of vi, j and vi,l vanish, we can conclude

that the same set of affine relations between vi, j and vi,l holds for

any value of i. Thus, there is an affine mapping that maps the

j-th horizontal parameter line to the l-th horizontal parameter

line

vi, j = A j,lvi,l + a j,l, A j,l ∈ R3×3, a j,l ∈ R3. (2)

The same argument can be made for the vertical parameter

lines. Expressing vk,l and vi,l by Eq. (2) in Eq. (1), we find that

all vertices of the j-th horizontal parameter line meet the same

quadratic equation. Hence, the vertices of every horizontal or

vertical parameter line lie on a quadric. If we assume one hor-

izontal parameter line not to be planar, we can deduce that A j,l

has to be symmetric. Moreover, a coordinate system can al-

ways be chosen such that the constant part a j,l in Eq. (2) is zero.

Under these assumptions and writing I ∈ R
3×3 for the identity

matrix, we find that

vT
i, j(A

2
j,l − I)vi, j = c, ∀i

vT
i,l(I − A−2

j,l )vi,l = c, ∀i.

Let x be an eigenvector of (A2
j,l
− I) with corresponding eigen-

value λ, then x is also an eigenvector of (I − A−2
j,l

) with cor-

responding eigenvalue µ = λ
λ+1

. As the eigenvalues meet
1
µ
− 1

λ
= 1, the two quadrics defined by the above equations

have to be confocal. Therefore, all horizontal parameter lines

lie on confocal quadrics. The same holds for all vertical param-

eter lines. Moreover, if the quadric Q containing a horizontal

parameter line H j is unique, the quadric determines the affine

mappings to all other horizontal parameter lines up to the choice

of one parameter. Let Q = {x ∈ R
3 : xT S x = 1} where S is a

symmetric matrix (we will keep this assumption for the rest of
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the paper). Then, the affine mapping vi, j 7→ vi,l has to be of the

form

vi,l =
√

tlS + Ivi, j, tl ∈ R.

Note that the square root always exists for tl sufficiently close to1

zero. We conclude that an orthogonal multi-net is determined2

up to sampling size as soon as one polyline on a given quadric3

is fixed.4

3.2. Construction of orthogonal multi-nets5

The affine mappings between parameter lines lead to an in-

teractive design of multi-nets. A user can first choose a quadric

Q and draw a polyline {vi0 : 0 ≤ i ≤ n} on that quadric. If the

quadric containing the polyline is unique, the shape of the en-

tire multi-net is already determined by the initial polyline. The

multi-net is then given by

vi j =
√

t jS + Ivi0

for any admissible choice of t j ∈ R, compare Fig. 4. One does

not have to choose the sampling right away and can instead

work with the smooth underlying surface parameterized by

ϕ(s, t) =
√

tS + Ic(s), s, t ∈ R,

where c is a curve on the quadric Q corresponding to S . Any6

sampling vi j = ϕ(si, t j) of that surface gives an orthogonal7

multi-net. Hence, the mesh can be made coarser or finer at any8

time while preserving the (multi) orthogonality property.9

Another way to obtain orthogonal multi-nets from a more

algebraic input is by using elliptic coordinates. To see that, we

observe that the curve t 7→
√

tS + Ic(s) is the intersection of the

two quadrics orthogonal to Q in the system of confocal quadrics

of Q that go through c(s). Hence, we can think of orthogonal

multi-nets as axis-aligned generalized cylinders in elliptic coor-

dinates. They can be parameterized by e.g.

ϕ(s, t) =





































±
√

(a+λ(t))(a+µ(s))(a+ν(s))

(a−b)(a−c)

±
√

(b+λ(t))(b+µ(s))(b+ν(s))

(b−a)(b−c)

±
√

(c+λ(t))(c+µ(s))(c+ν(s))

(c−a)(c−b)





































, (3)

where a > b > c > 0 and −a < ν(s) < −b < µ(s) < −c < λ(t).10

By choosing the functions µ(s) and ν(s) one determines a curve11

on an ellipsoid with axes
√

a,
√

b and
√

c for λ = 0. For differ-12

ent values of λ this curve is transported along the intersection13

lines of confocal one-sheeted and two-sheeted hyperboloids.14

One can exchange the role of ellipsoids and hyperboloids by15

having µ or ν depend on t instead of λ. The different cases are16

shown in Fig. 4.17

Note that for our analysis we assume that at least one parame-18

ter line is not planar. Cases where all parameter lines are planar19

occur in rotational surfaces where the parameter lines follow20

the meridian curves and the parallel circles [20].21

The parametrizations we derive are not principal and in gen-22

eral one cannot expect the quadrilaterals to be close to planar.23

Multi-nets like the one in Fig. 4 will have highly non-planar24

Fig. 4. Orthogonal multi-nets. (a) The mesh is generated by Eq. (3) and

extended to (b) by reflection in the coordinate planes. One family of pa-

rameter lines lies on confocal ellipsoids. The other family lies on the inter-

sections of confocal one-sheeted and two-sheeted hyperboloids. The meshes

(c-f) are different types of orthogonal multi-nets where the role of the con-

focal quadrics is switched.

faces if λ gets close to µ. Otherwise, faces are sufficiently pla- 25

nar in the sense that they form a good initial guess for opti- 26

mization towards planarity (see Fig. 10). Thus, in the eyes of 27

the authors, orthogonal multi-nets can be an interesting design 28

tool (see Fig. 5) in e.g. freeform architecture. 29

Fig. 5. The multi-net is created interactively. The curve drawn on the ellip-

soid determines the entire multi-net up to sampling size.

3.3. Orthogonal multi-nets as regularizers 30

The relation of orthogonal multi-nets to quadrics suggests us- 31

ing a pseudo multi-net property as regularizer. We propose a 32

regularization method where a mesh is optimized to meet the 33

multi-orthogonality property not globally but locally in every 34

m × n face patch. While usual regularization constraints force 35

polylines to be straight lines by minimizing the second deriva- 36

tive, we expect this regularization to force polylines towards 37

curves of the form t 7→
√

tS + Iv. We describe the effects of the 38

method in detail in the next section. 39



6 Preprint Submitted for Review /Computers & Graphics (2023)

Fig. 6. The effect of multi-net regularization. The mesh (a) is optimized

using different energies: Eortho in (b), Eortho + 0.005Emulti in (c) and

Eortho + 0.005E f air in (d). Optimizing for orthogonality alone is not enough

to obtain a smooth net (b). The regularization of Emulti helps to obtain

smooth polylines while preserving the shape (c). In contrast, including the

traditional fairness term E f air leads to a loss of the initial shape (d).

Fig. 7. We optimize mesh (a) using different energies. Using only Emulti

yields (b). The mesh is still doubly curved but the appearance is not

smooth. Using only E f air instead gives a smooth appearance but a loss

of features (c). A combination of both Energies gives the mesh (d) with

smooth polylines in a doubly curved surface.

4. Applications1

In the remainder of this paper we proceed to briefly showcase2

possible applications of the introduced orthogonality constraint.3

While we do not go into detail with each method, we hope to4

convey the versatility of the approach by demonstrating differ-5

ent use-cases. We are not the first to come up with these applica-6

tions. Principal meshes and discrete principal stress lines were7

characterized with this orthogonality condition in [15]. Mini-8

mal surfaces and constant mean curvature (CMC) surfaces ap-9

peared with this orthogonality condition in [14]. The idea to10

use orthogonal geodesics to characterize developable surfaces11

is based on [21], but the authors used a different orthogonality12

constraint.13

Computationally, our approach is more or less the same in14

every use-case. The Discrete Differential Geometric theory de-15

fines energy terms which the corresponding structures mini-16

mize. The contributions to these energy terms are formed by17

the local constraints at every vertex star or at every face, com-18

pare Tab. 1. Eventually, a weighted sum of energies of the form19

E = EOrtho. + λE□ + ω1E f air + ω2Emulti

is minimized. Here, ω1 and ω2 are small weights of mag- 20

nitude approximately 10−3. Different choices for E□ and their 21

geometric meaning are discussed in the following subsections. 22

The energy term EOrtho is defined as

EOrtho =

|F|
∑

f=1

(∥v f 1 − v f 3∥2 − ∥v f 2 − v f 4∥2)2.

Here |F| is the number of quad faces in the mesh and we in- 23

dex the vertices of a face f by fi in counter-clockwise order. 24

Minimizing EOrtho leads to equal diagonal length and thus an 25

orthogonal mesh. 26

Fairness energy terms E f air and Emulti are included in ev- 27

ery optimization which is essential to keep the interpretation 28

of meshes as discrete versions of smooth nets justified. Both 29

energy terms force lines to be straight. Their weights ω1 and 30

ω2 are set to zero in the final iterations of optimization as the 31

respective energies do not converge to zero in general. 32

The term E f air is a classical fairness term defined as

E f air =
∑

i∈polyline

(2vi − vil − vir)
2.

Here vil, vi, vir are three consecutive vertices on a parameter line. 33

Minimizing E f air can be seen as minimizing the second deriva- 34

tive of the parameter lines. 35

The term Emulti expresses the pseudo multi-net property. It 36

expands EOrtho to every one-by-two face patch and rewards 37

straight lines and orthogonality at the same time. As the 38

pseudo multi-net property implies local orthogonality, this fair- 39

ness term is only applicable for orthogonal meshes. However, 40

it should be mentioned that Emulti alone would be too weak to 41

guarantee useful outcomes of the optimization which is why 42

E f air is always needed. In contrast, using E f air without Emulti 43

still gives reasonable results. The advantage of Emulti is that it 44

has less influence on the entire shape of the mesh than E f air. 45

Certain features like doubly curved areas or crisp creases in a 46

mesh get easily lost if E f air is minimized. Giving less weight to 47

E f air and adding Emulti instead can help in such situations as we 48

show in Fig. 6 and Fig. 7. 49

To solve the optimization problem we use the regularized 50

Gauß-Newton algorithm as described in [22, 23]. Approxi- 51

mately ten to fifty iterations are done in our optimizations. It 52

is important that an initial guess is guided by some geometric 53

intuition; otherwise, one cannot hope to receive a useful out- 54

come. 55

4.1. Principal meshes 56

The so called principal curvature lines are a special family 57

of curves on a surface. They follow the directions in which a 58

surface is maximally or minimally bent. These directions are 59

always orthogonal and conjugate regardless of the surface. The 60

reverse is also true: Any net that is conjugate and orthogonal is 61

a net of principal curvature lines. 62

While the concept of orthogonality is clear, the concept of 63

conjugacy can be a bit harder to grasp geometrically. It means 64

that the tangents of curves of the first parameter family where 65

the curves intersect a given curve of the second parameter 66
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family, form a developable surface. On an infinitesimal scale1

we can think of this as neighbouring tangents being coplanar.2

Hence, on an infinitesimal scale conjugate curves form planar3

quadrilaterals. This infinitesimal planarity carries over to the4

discrete case where we call a quad mesh conjugate if all its5

faces are planar. In our approach a principal mesh is thus an6

orthogonal quad mesh with planar faces, compare Tab. 1.7

Fig. 8. Different discrete principal curvature lines. The mesh (a) is opti-

mized to be a circular mesh (b), conical mesh (c) and a principal mesh in

our sense (d). All optimizations were performed with equal weights and

exhibit almost perfectly planar faces. The face colors range from blue to

red according to the evaluated planarity, which is the relative spacial dis-

tance between two diagonal lines.

Fig. 9. Principal curvature line meshes. The meshes are optimized to have

planar and orthogonal faces.

Quad meshes aligned with principal curvature lines have8

good visual properties. In [24], the authors concluded that these9

meshes are best suited to optimize visual fairness defined via a10

small variation of the normal vector, compare Fig. 10. Princi-11

pal curvature meshes are particularly relevant in freeform ar-12

chitecture (see [1] for a detailed discussion). On the one hand,13

they provide a reliable way to approximate a smooth surface14

with planar quadrilaterals that are close to rectangles which is15

preferable from a visual perspective as well as from the view16

point of cost effective realization. On the other hand, they al-17

low a torsion-free support structure as the normals along princi-18

pal curvature lines form developable surfaces, compare Fig. 11.19

This property is best captured through circular meshes [2] or20

conical meshes [3], which allow an offset-mesh with parallel21

Fig. 10. We use the multi-nets as inspiration for new designs of principal

meshes. The mesh from Fig. 4-(f) is optimized to be principal giving the

mesh at the top left. A Möbius transformation gives the mesh on the bottom

left and maintains the principal mesh properties with high accuracy. The

mesh on the right is a rendering of the same mesh as a reflective surface

with high visual smoothness [24].

Fig. 11. Principal curvature lines give rise to torsion-free support struc-

tures. The top-left picture shows a torsion-free node where orthogonal and

close to planar quadrilaterals meet in a common line. The right picture

shows an architectural roof which allows a construction from torsion-free

beams of constant height (bottom left).

edges and constant face or vertex distance, respectively. We ob- 22

tain principal meshes that behave similar to circular or conical 23

meshes (Fig. 8). 24

Computationally, planarity of faces can be expressed by the

energy term

EPQ =

|F|
∑

f=1

4
∑

j=1

(n f · (v f j − v f k))2 +

|F|
∑

f=1

(n f · n f − 1)2,

where the index k = j mod 4 + 1. The face normals n f are in- 25

troduced as auxiliary variables, compare [22]. In Fig. 9, we 26

demonstrate principal meshes obtained by our method. The 27

faces are planar and orthogonal with high accuracy at the same 28

time. 29

4.2. Developable surfaces via orthogonal geodesic nets 30

Developable surfaces are surfaces with zero Gaußian curva- 31

ture. They can, at least locally, be isometrically deformed into 32

the plane. Thus, they are particularly interesting for manufac- 33

turing as developable shapes can be produced by bending flat 34

pieces. Certain families of curves like orthogonal geodesic nets 35

or isogonal Chebyshev nets only exist in developable surfaces. 36

This can be used to model developable surfaces as it was done 37

in [21, 25] using orthogonal geodesics. We present two similar 38
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approaches, one using orthogonal geodesic nets and one using1

orthogonal Chebyshev nets. In the smooth setting these nets2

would be equivalent but their discretizations yield slightly dif-3

ferent structures.4

Geodesics are locally the shortest path between two points in5

a surface. They do not bend from the point of view of the sur-6

face. This means that the orthogonal projection of a geodesic7

c : R → R
3 around a point P = c(t0) to the tangent plane in8

P has zero curvature in P. This is equivalent to the geodesic9

curvature of c being zero. Geodesics can be thought of as the10

straight lines on a surface. A particle that moves freely along a11

surface with no forces acting on the particle except for the ones12

that keep it on the surface, moves along a geodesic with con-13

stant speed. Thus, geodesics are of special interest in physics.14

A discrete counterpart of geodesics was introduced in [26] in15

order to discretize surfaces of constant negative Gaußian cur-16

vature. There, a discrete geodesics net is defined as a quad17

mesh where opposite angles at every vertex star are equal. In18

[21, 25], the concept of discrete geodesics was expanded to or-19

thogonal geodesics by requiring that all four angles at every20

vertex star are equal. Alternatively, one can use the orthogo-21

nality constraint presented in this paper obtaining the following22

definition.23

Definition 6. An orthogonal geodesic mesh is a quadrilateral24

mesh where diagonals in every face have equal length and op-25

posite angles at every vertex star of valence four are equal (see26

Tab. 1).27

The energy term we use to create geodesic meshes is

EGnet =

|V |
∑

i=1

((ei1 · ei2 − ei3 · ei4)2 + (ei2 · ei3 − ei4 · ei1)2)

+

|V |
∑

i=1

4
∑

j=1

(

ei j −
vi j − vi

∥vi j − vi∥

)2

,

where ei j are the unit edge vectors emanating from a vertex vi.28

They are introduced as auxiliary variables in the optimization.29

We index the neighbours of vertex vi by vi j. The value ∥vi j − vi∥30

is assumed constant when the gradient is computed and updated31

after every iteration.32

Another way to obtain developable surfaces is to discretize33

orthogonal Chebyshev nets. A smooth Chebyshev net ϕ satis-34

fies ∂u∥∂vϕ∥2 = ∂v∥∂uϕ∥2 = 0. This can be seen as the infinites-35

imal quads formed by the net having constant v-length along36

every u-parameter line and vice versa. The discrete version of37

Chebyshev nets are quad meshes where opposite edges in every38

quadrilateral have equal length [2]. It is always possible to repa-39

rameterize a smooth Chebyshev net such that ∥∂uϕ∥ = ∥∂vϕ∥ =40

1. The Gaußian curvature of the parameterized surface can then41

be computed from the angle α = ∡(∂uϕ, ∂vϕ) by K = − αuv

sinα
42

([27]). Consequently, a Chebyshev net where α is constant has43

to lie on a developable surface. We can discretize the special44

case of an orthogonal Chebyshev net with ∥∂uϕ∥ = ∥∂vϕ∥ = 1 in45

the following way.46

Definition 7. A quadrilateral mesh is a Chebyshev net if all47

edges are of equal length. If the Chebyshev net is orthogonal, it48

constitutes a discrete developable surface.49

A single quadrilateral in a Chebyshev net has many interest- 50

ing properties. The four triangles formed by any three of its 51

vertices are all congruent. Consequently, every quadrilateral is 52

symmetric with respect to reflection in its medial lines. Hence, 53

the medial line connecting m1 in Fig. 12 lies in the symmetry 54

plane of v1 and v2 and also in the symmetry plane of v3 and 55

v4. Therefore, the medial lines meet the edges of the quadri- 56

lateral at right angles. Two consecutive medial lines lie in the 57

symmetry plane of the edge that both medial lines intersect, see 58

Fig. 12. This allows us to view the polylines formed by mid- 59

point connectors as discrete geodesics. Consider the situation 60

in Fig. 12 right. A reasonable discrete tangent plane in p2 con- 61

tains the edge e34. It is orthogonal to the osculating plane of 62

the polyline through p1, p2 and p3. Like in the smooth case, 63

the orthogonal projection of the polyline to the tangent plane is 64

straight. In smooth differential geometry any Chebyshev net is 65

also an orthogonal geodesic net and vice versa. We have found 66

a discrete version of this fact. 67

Lemma 8. The polylines formed by the midpoint connectors of 68

an orthogonal Chebyshev net constitute an orthogonal geodesic 69

net. 70

These geodesics also have the property of being locally the 71

shortest paths. Consider again the situation of Fig. 12: The 72

shortest path from p1 to p3 that crosses e43 is indeed the path 73

through p2. 74

Fig. 12. Left: An orthogonal Chebyshev quadrilateral. All edges have equal

length. So do the midpoint connectors and the diagonals. The medial

lines meet the edges of the quadrilateral in right angles. Right: The plane

spanned by the vertices p1, p2 and p3 is orthogonal to e34. Thus, the poly-

lines formed by midpoint connectors can be seen as discrete geodesics.

The energy term characterizing Chebyshev nets in our opti-

mization is

ECheby =

|E|
∑

ei j

((vi − v j)
2 − l2)2,

where vi, v j are endpoints of an edge ei j from |E| edges and l is 75

a variable or an assigned value. Optimizing a mesh to minimize 76

EGnet + EOrtho or ECheby + Eortho gives the result seen in Fig. 13 77

and Fig. 14. We find that the Gaußian curvature is close to zero 78

and the normal image is close to being one-dimensional. 79
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Fig. 13. We optimize an initial mesh (a) to be developable using the method

of [21] in (b), using orthogonal G-nets in our sense in (c) and using orthog-

onal Chebyshev nets in (d). The four corner vertices are fixed for each

mesh. All meshes are close to developable surface whose Gaußian image

has nearly vanishing area as shown in (e).

Fig. 14. Different developable meshes colored by Gaußian curvature K.

The initial meshes for the optimization are depicted in green next to the

developable meshes. For (a) and (b) orthogonal geodesics were used and

for (c) and (d) orthogonal Chebyshev nets. The meshes (e) and (f) are or-

thogonal geodesic nets and Chebyshev nets at the same time.

4.3. Minimal surfaces via orthogonal asymptotic nets1

After conjugate curves and geodesics, we focus on asymp-2

totic curves as the next classical example of families of curves.3

These are the curves of zero torsion, i.e. the derivative of the4

normal vector along an asymptotic curve is always orthogonal5

to the tangent vector of the curve. Another definition that is6

more prone to discretization is that the osculating plane of an7

asymptotic curve in a point P is the tangent plane of the sur-8

face at that point. Consequently, two intersecting asymptotic9

curves have to have identical osculating planes in the point of 10

intersection. The discrete osculating plane of a polyline in a 11

point P is just the plane spanned by P and its two neighbours in 12

the polyline. Thus, asymptotic meshes can be defined as those 13

quadrilateral meshes where every vertex star is planar. This def- 14

inition has first been introduced in [28, 29] and is predominant 15

in the field of Discrete Differential Geometry [2]. 16

The angle 2α of two asymptotic curves is connected to the 17

principal curvatures κ1 and κ2 by tan2(α) = −κ1/κ2. Thus, an 18

asymptotic net that is orthogonal as well implies κ1 + κ2 = 0, 19

so it has to be the parametrization of a minimal surface. Min- 20

imal surfaces have been studied extensively in the smooth set- 21

ting as well as in the discrete setting and are still a vivid field 22

of research. By combining our orthogonality condition with 23

the classic asymptotic condition of planar vertex-stars, we ob- 24

tain a new model of discrete minimal surfaces (see Fig. 15 25

and Fig. 16). To be more precise, we obtain an asymptotic 26

parametrization of a minimal surface. 27

The planes along any curve on a surface defined by the sur- 28

face normal and the tangent of the curve envelop a developable 29

surface. The normal curvature of the curve in the initial surface 30

corresponds to the geodesic curvature in the developable sur- 31

face. Thus, an asymptotic parametrization of a surface can be 32

used for a physical gridshell model of a minimal surface with 33

planar developable strips (see Fig. 16). 34

The energy term we need to minimize to obtain planar vertex

stars is

EAnet =

|V |
∑

i=1

4
∑

j=1

(ni · (vi j − vi))
2 +

|V |
∑

i=1

(ni · ni − 1)2,

where the auxiliary variable ni stands for the normal at vertex 35

vi. Minimizing EOrtho + EAnet yields the results seen in Fig. 15 36

and Fig. 16. 37

4.4. Constant mean curvature (CMC) surfaces via orthogonal 38

S-nets. 39

The so-called principal symmetric meshes (S-nets) are gener- 40

alizations of asymptotic curves introduced in [31, 32] and stud- 41

ied in great detail in [33]. They can be characterized by the fact 42

that the principal curvature lines bisect the principal symmetric 43

curves in every point. The normal curvature of a line is deter- 44

mined by the angle α which the curve forms with the first prin- 45

cipal direction by the Euler formula κn = cos(α)2κ1 + sin(α)2κ2. 46

Hence, two principal symmetric curves have equal normal cur- 47

vature in their point of intersection. The normal curvature of a 48

curve c at a point p determines the so-called Meusnier sphere 49

(see e.g. [34]), a sphere with tangential contact to the surface in 50

p and radius 1/κn. The osculating circle of every curve through 51

p with the same tangent as c lies on the Meusnier sphere. Con- 52

sequently, the osculating circles of two principal symmetric 53

curves in their point of intersection lie on the same sphere since 54

their Meusnier spheres coincide. This suggests the discretiza- 55

tion of principal symmetric meshes developed in [31, 33]: 56

Definition 9. A quadrilateral mesh is called principal symmet- 57

ric if the five points of every vertex star lie on a common sphere. 58
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Fig. 15. Modeling a minimal gridshell. We start with a flat mesh (a). By using the form-finding software [30] we obtain a membrane mesh (b) that is floated

up from (a). The corresponding diagonal mesh is optimized to be an orthogonal asymptotic net (c). In (d) we see the final rendering of the mesh as a

minimal gridshell. The unrollments of the individual developable strips are straight (e).

Fig. 16. Computational design and construction pipeline of a minimal gridshell. In (a) we extract a quad mesh from a given triangular mesh as an initial

mesh. In (b) we optimize it to be an orthogonal asymptotic net with bottom points gliding on the xy−plane. (c) is the asymptotic gridshell formed by the

developable strips along the asymptotic lines. The individual strips enroll as straight lines in the plane (d). (f) is a physical realization of the model with

repetitive 3D printed joints (e).

If principal symmetric curves are orthogonal, they form an an-1

gle of 45◦ with the principal curvature lines and the normal cur-2

vature equals the mean curvature of the surface. As the mean3

curvature is the same as the radius of the Meusnier sphere in this4

case, we obtain a discrete model for CMC surfaces by requiring5

constant radius of the spheres at the vertex stars.6

Definition 10. A quadrilateral mesh is a discrete CMC surface,7

if it is orthogonal and spheres at the vertex stars have constant8

radius.9

Fig. 17. Discrete CMC surfaces. Each mesh is optimized to be a discrete

orthogonal S-net with constant radius of the Meusnier spheres.

The developable strips along orthogonal S-nets exhibit useful10

features similar to the asymptotic case. If the normal curvature11

along a line is constant, the geodesic curvature of the line in the12

corresponding developable strip is also constant. Therefore, the13

Fig. 18. (a) Orthogonal S-net with constant radius 3.5 of the Meusnier

spheres at all vertices. The sphere centers are drawn as red dots. (b) An

orthogonal gridshell based on the S-net. (c) The unrollments of all circular

strips in the plane nearly align along a circle of radius 3.5.

developable strips along an orthogonal S-nets on cmc surfaces 14

are all isometric to sections of the same ring. 15

Computationally, we enforce the S-net property via the en-

ergy term

ES net =

|V |
∑

i=1

4
∑

j=1

((vi j − oi)
2 − R2)2 +

|V |
∑

i=1

((vi − oi)
2 − R2)2,

where the sphere centers oi and the radius R are introduced as 16
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auxiliary variables. The radius R can be prescribed with a given1

number to determine the mean curvature of the mesh. The re-2

sults of minimizing ES net+EOrtho are seen in Fig. 17 and Fig. 18.3

4.5. Principal stress nets4

Orthogonality does not only appear in geometric shapes but5

also in physical structures. If the quadrilateral mesh describes a6

load bearing structure, forces act along the edges of the mesh.7

The mesh is in equilibrium if the sum of the forces at each ver-8

tex is zero. This means that in a physical realization of the mesh9

no bending forces appear. As described in [35], a quadrilateral10

mesh in equilibrium that additionally is orthogonal, is a discrete11

version of the net of principal stress lines in the surface. Under12

certain assumptions, [36] showed that the optimal orientation13

of fibres in a filamentary composite is along the lines of princi-14

pal stress. Architectural self supporting structures where beams15

follow principal stress lines are regarded as using material very16

efficient [37]. Alas, a precise statement about optimality is hard17

to make. We do not go into detail here.18

If a vertical load pi is applied in an unsupported vertex vi, the

equilibrium condition in vi reads

cload,i :=

4
∑

j=1

wi j(vi − vi j) −
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Here the sum is over neighbouring vertices of vi and wi j denotes

the force density in the edge from vi to v j. The force densities

are introduced as auxiliary variables and meet wi j = −w ji. The

vertical load pi can depend on the mesh in which case we update

it after every iteration. We obtain equilibrium by minimizing

the energy term

EEqui :=

|V |
∑

i=1

c2
load,i, (4)

where the sum is only taken over unsupported vertices. The19

results of our optimization are presented in Fig. 19 and Fig. 20.20

Fig. 19. Orthogonal meshes in static equilibrium under vertical loads with

supported boundaries. Inner vertices are unsupported and each of them

satisfies the equilibrium Eq. (4). The light green meshes are the initial

ones.

Fig. 20. An architectural rendering of a self supported structure following

principal stress lines. The individual faces are decorated with parallelo-

grams of light-weight lamella.

Interactive Design. All presented models allow an interactive 21

design. A user can influence the meshes by manually moving 22

specified handles of the mesh. A dragging energy is then in- 23

troduced that punishes the distance of the handle to the corre- 24

sponding vertex of the mesh. One can introduce an additional 25

energy term Eiso which guarantees only isometric deformations 26

of the mesh, see [38]. This is particularly useful when working 27

with developable surfaces. The results are seen in Fig. 21. 28

The computational statistics depend on the quality of the ini- 29

tializations and the complexity of the meshes. In Tab. 2, we list 30

the number of vertices |V |, quad faces |F|, variables #var and 31

constraints #cons, and running time per iteration of the interac- 32

tive design results in Fig. 21. The value ωiso is the weight of the 33

isometric deformation energy Eiso in the optimization. 34

Table 2. Optimization statistics of the interactive design results in Fig. 21

tested on an Intel Xeon E5-2687W 3.0 GHz processor.

Fig. 21 |V | |F| #var #cons ωiso time[s]/it

(a) 1792 1856 11328 18176 0 0.29

(b) 720 768 20115 24960 1 0.34

(c) 2079 2304 82126 96049 0.01 1.26

(d) 2301 2400 42019 50525 0 1.74

(e) 1029 1076 9951 23875 0 0.36

5. Conclusion 35

In this paper we discuss a discrete version of orthogonality 36

first introduced by [14]. It is expressed by the two diagonals in 37

every quadrilateral being of equal length. We motivate this ap- 38

proach through the theory of mesh pairings. Like in the smooth 39

theory a mesh is called orthogonal if and only if the diagonal 40

meshes are rhombic in the sense of a mesh pairing. 41

We find that orthogonal multi-nets exist based on Ivory’s 42

Theorem. These are meshes where every parameter rectangle 43

is orthogonal. We extend Ivory’s Theorem to three-dimensional 44

space to describe the shape of orthogonal multi-nets and present 45

ways to construct them interactively and analytically. 46

The orthogonality condition described in this paper is partic- 47

ularly well suited for optimization. Moreover, it is applicable in 48
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Fig. 21. The different meshes described in this paper can be incorporated in an interactive design process, where a user may change the appearance by

dragging the red vertices. The figures show from left to right a principal mesh, developable surface, minimal surface, CMC surface, and a mesh of principal

stress lines. The corresponding initial meshes are Fig. 4-(d),14-(e), 15-(c), 17-(a), and 19-(b). In (b) we use the isometric deformation described in [38].

a wide range of applications as it is not limited to planar quadri-1

laterals. We showcase the versatility of the approach by collect-2

ing different ideas where this orthogonality has been used and3

add the case of orthogonal geodesics and orthogonal Chebyshev4

nets. Different design pipelines and an interactive design based5

on the orthogonality constraint are illustrated.6
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negativer Krümmung. Österreich Akad Wiss Math-Nat Kl S-B IIa 76

1951;160:39–77. 77

[27] do Carmo, M. Differential Geometry of Curves and Surfaces. Prentice- 78

Hall; 1976. 79

[28] Sauer, R. Projektive Liniengeometrie. Walter de Gruyter & Co.; 1937. 80

[29] Sauer, R. Differenzengeometrie. Springer; 1970. 81

[30] Piker, D. Kangaroo: form finding with computational physics. Architec- 82

tural Design 2013;83(2):136–137. 83

[31] Schling, E, Kilian, M, Wang, H, Schikore, D, Pottmann, H. Design 84

and construction of curved support structures with repetitive parameters. 85

In: et al., LH, editor. Adv. in Architectural Geometry. Klein Publ. Ltd; 86

2018, p. 140–165. 87

[32] Kilian, M, Wang, H, Schling, E, Schikore, J, Pottmann, H. Curved 88

support structures and meshes with spherical vertex stars. In: ACM SIG- 89

GRAPH 2018 Posters. SIGGRAPH ’18; New York, NY, USA: Associa- 90

tion for Computing Machinery; 2018,. 91

[33] Pellis, D, Wang, H, Rist, F, Kilian, M, Pottmann, H, Müller, C. 92

Principal symmetric meshes. ACM Trans Graphics 2020;39(4). Proc. 93

SIGGRAPH. 94

[34] Blaschke, W, Leichtweiß, K. Elementare Differentialgeometrie. Die 95

Grundlehren der mathematischen Wissenschaften; Springer-Verlag; 1973. 96

ISBN 9780387058894. 97

[35] Kilian, M, Pellis, D, Wallner, J, Pottmann, H. Material-minimizing 98

forms and structures. ACM Trans Graphics 2017;36(6). Proc. SIG- 99

GRAPH Asia. 100

[36] Brandmaier, HE. Optimum filament orientation criteria. Journal of Com- 101

posite Materials 1970;4:422–425. 102

[37] Mitchell, T. A limit of economy of material in shell structures. Ph.D. 103

thesis; UC Berkeley; 2013. 104

[38] Jiang, C, Wang, H, Ceballos Inza, V, Dellinger, F, Rist, F, Wallner, J, 105

et al. Using isometries for computational design and fabrication. ACM 106

Trans Graph 2021;40(4):42:1–12. 107


	Introduction
	Rhombic mesh pairings and discrete orthogonality
	Ivory's theorem and orthogonal multi-nets
	Properties of orthogonal multi-nets
	Construction of orthogonal multi-nets
	Orthogonal multi-nets as regularizers

	Applications
	Principal meshes
	Developable surfaces via orthogonal geodesic nets
	Minimal surfaces via orthogonal asymptotic nets
	Constant mean curvature (CMC) surfaces via orthogonal S-nets.
	Principal stress nets

	Conclusion

