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High-quality surface designs are increasingly significant in industrial
applications, such as architecture and product design, yet they pose
challenges in balancing visual appeal and functional requirements.
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Isogonal nets (I-nets) stand out for their aesthetically pleasing pat- N

terns and engineering practicality. However, constructing such nets (A)J (B) (C)
remains difficult due to their dependence on complex angle con-
straints or a narrow focus on orthogonal scenarios.

We propose a novel representation and construction method for |-
nets characterized by similar mid-edge subdivided parallelograms in
the quad faces. This approach achieves a simple yet versatile repre-
sentation that generalizes orthogonal nets and extends to the con-
struction of isogonal 4-webs (I-webs). By focusing on constraining
edge ratios, our method enables efficient integration into mesh op- (A)
timization algorithms.
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We demonstrate the effectiveness of I-nets and [-webs in freeform
shapes through conformal mapping and numerical optimization. Ex-
periments on various surfaces validate our method, showcasing its
potential for both theoretical advancements and practical applica-
fions.

Parallelogram determined by two edge ratios (A,) (B,) (C,) (D,) (E,)

Given a parallelogram ABC' D with neighboring edge lengths BC =
a and AB = b, their interior angle /B = 6 and diagonal angle
LZAOD = 0, the lengths of the two diagonal AC = p and BD = g
can be expressed using the Law of Cosine in trigonometry as fol-
ows: (A,) (B,) (C,) (D) (E,)

p° =a® + b —2abcosl, ¢° = a’+b>+ 2abcosh,
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which brings to
p*+ ¢ = 2(a® + ),

A parallelogram is called an (6, 6)-Parallelogram, if we name the
interior angle as # and diagonal angle as 0.
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Figure 3: (Ay — FEq) I-nets with similar inscribed parallelograms, characterized by angles (6, 6y) = (arccos %,%) can be extracted from the isothermal parametrization
on surfaces. Examples include (A) a cylinder, (B) a sphere, (C) a catenoid, (D) a helicoid, and (E) a conjugate minimal surface combined by catenoid and helicoid. These
I-nets can be further optimized to have (0, 6y) = (%”, %) in (Ay — E5), approximating the corresponding surfaces. Alternatively, they can be transformed conformally under

Mébius transformations to new surface shapes in (A; — E3), and then optimized to have 6 = 6, = >% approximated on the surfaces in (4, — Ej).

I-net and I-web defined based on mid-edge subdivided parallelograms

Figure 1 A (0, 0y)-Parallelogram with an interior angle # and an diagonal angle 6. . . . . .
If 0 = 60y, it Is a 8-Parallelogram, which possesses two similar triangles AABD ~ In a general spatial quad, connecting the midpoints of the edges in

AODC with equal edge ratios a: b: g =2:4:b, d coijlnlterclock\iviseﬂc]j.irecﬁolrlw florms d ;ested Su.tidi\/iéjed o Theorem 1. A smooth surface parametrization X : (u,v) C R? —
parallelogram [1]. This parallelogram has opposite edges paralle X (u,v) C R is isogonal (I-net) if the ratios |l and ¥l

and equal in length to dy and do. Thus, 8 equals an interior angle of T Xyl ' |
the parallelogram, and 6, is the angle between its diagonals. stant, where Y(u, v) = X(u—v,u+wv)is the diagonal parametriza-

and are con-

Fora (8, 6y)-Parallelogram with two edge lengthsa = 1and b = A and

two diagonal lengths p and g, the interior angles 6 and the diagonal tion of X(u,v). Furthermore, Y (u,v) is isogonal with respect to
angle 6y can be expressed in terms of A and p as follows: A quad is called a (B(\, ), Bp(A, 1))-quad, short as (0, 6y)-quad, if X(u,v).
(1+ )\2)(“2 —1) (1+ MQ)()\Z — 1) its mid-edge subdivided parallelogram is a (8, 6)-Parallelogram. - —
cos bt = Nt ) by = TSR Theorem 2. A smooth surface parametrization X (u, v) and its di-
, . A guad is called a 8(\)-quad, short as 6-quad, if its mid-edge sub- agonal parametrization Y (u,v) = X(u —v,u+v) form an isogonal
where A and yu satisfy the conditions: division is a 6-Parallelogram. 4-web (I-web) if the ratios I1Zull and IXell 56 constant.
!M—1!<>\< w1 |>\—1|< _ A+ 1 1Xo ] 1Yl
w1 =1 A+1 K A =1 Proposition 1. For a (6, 60y)-quad with two diagonal vectors d;
Additionally, the angles a and 8 of the triangle forming half of the and dz and two medial-line vectors mj3 and myy, let A and p be

the ratios of the quad's two diagonal lengths and two medial lines,

parallelogram can be computed by A and p as follows: . ,
respectively, given by

3N+ N4 2 — 1 N2 — N2+ 3%+ 1
COS (v = cos 3 = |daf|

OApn/2(1 + A2)(1 + p2) 221+ A (1 + ) dyl A,
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=1,
Parallelogram with ¢ = 6, X,
\,
A parallelogram is called a 8-Parallelogram if the interior angle 8 is /
equal to the angle between the two diagonals.
(A) (B) (©€) (D)
For a Q—Parallelogram with two edge Iehgths a = 1 and b = .)\.and Fisure 5 Special cases for I-net and [-web based on the representation of similar
two diagonal lengths p and ¢, the following properties are exhibited: Figure 4. Mid-edge subdivided parallelogram within a general spacial (6,6y)- parallelograms in the CBP. (A) A = 1 < 6y = Z. I|-net with similar rhombuses
p= \/i g = \/5)\’ quad. The interior angle 6 and the diagonal angle 6, of the parallelogram are becomes O-net. (B) u =1« 6 = Z. |I-net with similar rectangles. (C) A =p < 0 =
1 1 functions of the ratio A of the diagonal lengths and the ratio u of the medial-line fy. |-net with similar §-Parallelograms. X(u,v) and Y (u, v) are aligned through
cos 0 :5()\ — X)a lengths of the quad. The quad is referred to as a #-quad, if the parallelogram is a rotation. D) A=pu=1<0=0= Z. O-net with similar squares. X(u,v) is locally
V2 —1 <A< V2+1, 0-Parallelogram, where the angles 6 = 6. equivalent to Y (u, v) after a Z rotation.
V2(3\% — 1) 5 V2(1 4 \?)
CoS (v = ,COS b = : o
% 4\ Optimized I-nets and I-webs on freeform surfaces

The target function E. for a discrete I-net (DI-net) is formulated by
iIntegrating local constraints across the mesh and combining them
with fairness E'¢;y, self-closeness E s, approximation E ., and
boundary-gliding Ly, terms:

by = bg +wibs +walipgiy + w3ligos + Waliapp + Ws Epgyy,

do|| | mys5|
where E— represents the |-net energy term ldall = A\ —
0 'ep 5y Idul[ = 7 Tmoy

each quad face, Eyrepresents user-defined constraints with wq
being O or 1, and

2
Lgqir = Z (2v; — vy — Vi),
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Figure 2. (A — D) (0, 6,)-Parallelograms with different edge ratios (b : a,q : p): Eilos = Z (Vi — V)7,
(A) (A, 1), B) (5, 1), (C) (A, ), (D) (3,3)- (E — G) 6-Parallelograms with § = §, 7, icvertices
and Z, respectively. Eapp = Z (vi — p;)- ni>2>
icvertices Figure 6: A guad mesh with a singular face at the center is optimized to (A) a
Fy iy = Z (v; — p;) ¥ e-1)2. Dl-net with 8 = 6y = § and (B) a DI-net with (6,0y) = (5, }), respectively. (A', B)
Reference Y bound ! ! ! show their corresponding Mabius transformations, preserving the geometric con-
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nectivity.
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