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Abstract

High‐quality surface designs are increasingly significant in industrial
applications, such as architecture and product design, yet they pose
challenges in balancing visual appeal and functional requirements.

Isogonal nets (I‐nets) stand out for their aesthetically pleasing pat‐
terns and engineering practicality. However, constructing such nets
remains difficult due to their dependence on complex angle con‐
straints or a narrow focus on orthogonal scenarios.

We propose a novel representation and construction method for I‐
nets characterized by similar mid‐edge subdivided parallelograms in
the quad faces. This approach achieves a simple yet versatile repre‐
sentation that generalizes orthogonal nets and extends to the con‐
struction of isogonal 4‐webs (I‐webs). By focusing on constraining
edge ratios, our method enables efficient integration into mesh op‐
timization algorithms.

We demonstrate the effectiveness of I‐nets and I‐webs in freeform
shapes through conformal mapping and numerical optimization. Ex‐
periments on various surfaces validate our method, showcasing its
potential for both theoretical advancements and practical applica‐
tions.

Parallelogram determined by two edge ratios

Given a parallelogram ABCD with neighboring edge lengths BC =
a and AB = b, their interior angle ∠B = θ and diagonal angle
∠AOD = θ0, the lengths of the two diagonal AC = p and BD = q
can be expressed using the Law of Cosine in trigonometry as fol‐
lows:

p2 = a2 + b2 − 2ab cos θ, q2 = a2 + b2 + 2ab cos θ,

which brings to
p2 + q2 = 2(a2 + b2).

A parallelogram is called an (θ, θ0)‐Parallelogram, if we name the
interior angle as θ and diagonal angle as θ0.

Figure 1: A (θ, θ0)‐Parallelogramwith an interior angle θ and an diagonal angle θ0.
If θ = θ0, it is a θ‐Parallelogram, which possesses two similar triangles 4ABD '
4ODC with equal edge ratios a : b : q = p

2 : q
2 : b.

For a (θ, θ0)‐Parallelogramwith two edge lengths a = 1 and b = λ and
two diagonal lengths p and q, the interior angles θ and the diagonal
angle θ0 can be expressed in terms of λ and µ as follows:

cos θ = (1 + λ2)(µ2 − 1)
2λ(1 + µ2)

, cos θ0 = (1 + µ2)(λ2 − 1)
2µ(1 + λ2)

,

where λ and µ satisfy the conditions:
|µ − 1|
µ + 1

< λ <
µ + 1

|µ − 1|
,

|λ − 1|
λ + 1

< µ <
λ + 1

|λ − 1|
.

Additionally, the angles α and β of the triangle forming half of the
parallelogram can be computed by λ and µ as follows:

cos α = 3λ2µ2 + λ2 + µ2 − 1
2λµ

√
2(1 + λ2)(1 + µ2)

, cos β = λ2µ2 − λ2 + 3µ2 + 1
2µ

√
2(1 + λ2)(1 + µ2)

.

Parallelogramwith θ = θ0

A parallelogram is called a θ‐Parallelogram if the interior angle θ is
equal to the angle between the two diagonals.

For a θ‐Parallelogram with two edge lengths a = 1 and b = λ and
two diagonal lengths p and q, the following properties are exhibited:

p =
√

2, q =
√

2λ,

cos θ =1
2
(λ − 1

λ
),

√
2 − 1 <λ <

√
2 + 1,

cos α =
√

2(3λ2 − 1)
4λ2 , cos β =

√
2(1 + λ2)

4λ
.

Figure 2: (A − D) (θ, θ0)‐Parallelograms with different edge ratios (b : a, q : p):
(A) (λ, µ), (B) (1

λ, µ), (C) (λ, 1
µ), (D) (1

λ, 1
µ). (E − G) θ‐Parallelograms with θ = π

3 , π
4 ,

and π
6 , respectively.
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Figure 3: (A1 − E1) I‐nets with similar inscribed parallelograms, characterized by angles (θ, θ0) = (arccos 1√
5,

π
4) can be extracted from the isothermal parametrization

on surfaces. Examples include (A) a cylinder, (B) a sphere, (C) a catenoid, (D) a helicoid, and (E) a conjugate minimal surface combined by catenoid and helicoid. These
I‐nets can be further optimized to have (θ, θ0) =

(4π
9 , π

4
)
in (A2 − E2), approximating the corresponding surfaces. Alternatively, they can be transformed conformally under

Möbius transformations to new surface shapes in (A3 − E3), and then optimized to have θ = θ0 = 5π
18 approximated on the surfaces in (A4 − E4).

I-net and I-web defined based on mid-edge subdivided parallelograms

In a general spatial quad, connecting the midpoints of the edges in
a counterclockwise direction forms a nested subdivided
parallelogram [1]. This parallelogram has opposite edges parallel
and equal in length to d1 and d2. Thus, θ equals an interior angle of
the parallelogram, and θ0 is the angle between its diagonals.

A quad is called a (θ(λ, µ), θ0(λ, µ))‐quad, short as (θ, θ0)‐quad, if
its mid‐edge subdivided parallelogram is a (θ, θ0)‐Parallelogram.

A quad is called a θ(λ)‐quad, short as θ‐quad, if its mid‐edge sub‐
division is a θ‐Parallelogram.

Proposition 1. For a (θ, θ0)‐quad with two diagonal vectors d1
and d2 and two medial‐line vectors m13 and m24, let λ and µ be
the ratios of the quad's two diagonal lengths and twomedial lines,
respectively, given by

‖d2‖
‖d1‖

= λ,
‖m13‖
‖m24‖

= µ.

Figure 4: Mid‐edge subdivided parallelogram within a general spacial (θ, θ0)‐
quad. The interior angle θ and the diagonal angle θ0 of the parallelogram are
functions of the ratio λ of the diagonal lengths and the ratio µ of the medial‐line
lengths of the quad. The quad is referred to as a θ‐quad, if the parallelogram is a
θ‐Parallelogram, where the angles θ = θ0.

Theorem 1. A smooth surface parametrization X : (u, v) ⊂ R2 7→
X(u, v) ⊂ R3 is isogonal (I‐net) if the ratios ‖Xu‖

‖Xv‖ and
‖Yv‖
‖Yu‖ are con‐

stant, where Y(u, v) = X(u−v, u+v) is the diagonal parametriza‐
tion of X(u, v). Furthermore, Y(u, v) is isogonal with respect to
X(u, v).

Theorem 2. A smooth surface parametrization X(u, v) and its di‐
agonal parametrization Y(u, v) = X(u−v, u+v) form an isogonal
4‐web (I‐web) if the ratios ‖Xu‖

‖Xv‖ and ‖Yv‖
‖Yu‖ are constant.

Figure 5: Special cases for I‐net and I‐web based on the representation of similar
parallelograms in the CBP. (A) λ = 1 ⇔ θ0 = π

2 . I‐net with similar rhombuses
becomes O‐net. (B) µ = 1 ⇔ θ = π

2 . I‐net with similar rectangles. (C) λ = µ ⇔ θ =
θ0. I‐net with similar θ‐Parallelograms. X(u, v) and Y(u, v) are aligned through
rotation. (D) λ = µ = 1 ⇔ θ = θ = π

2 . O‐net with similar squares. X(u, v) is locally
equivalent to Y(u, v) after a π

4 rotation.

Optimized I-nets and I-webs on freeform surfaces

The target function E+ for a discrete I‐net (DI‐net) is formulated by
integrating local constraints across the mesh and combining them
with fairness Efair, self‐closeness Eclos, approximation Eclos and
boundary‐gliding Eapp terms:

E+ = E□ + ω1E∗ + ω2Efair + ω3Eclos + ω4Eapp + ω5Ebdry,

where E□ represents the I‐net energy term ‖d2‖
‖d1‖

= λ,
‖m13‖
‖m24‖

= µ of
each quad face, E∗represents user‐defined constraints with ω1
being 0 or 1, and

Efair =
∑

i∈polyline

(2vi − vil − vir)2,

Eclos =
∑

i∈vertices

(vi − v̄i)2,

Eapp =
∑

i∈vertices

((vi − pi) · ni)2,

Ebdry =
∑

i∈boundary

((vi − pi) × ei1)2.

Figure 6: A quad mesh with a singular face at the center is optimized to (A) a
DI‐net with θ = θ0 = π

3 and (B) a DI‐net with (θ, θ0) = (π
3 , π

4), respectively. (A′, B′)
show their corresponding Möbius transformations, preserving the geometric con‐
nectivity.


