

Rectifying Strip Patterns

Bolun Wang¹, <u>Hui Wang¹</u>, Eike Schling², Helmut Pottmann¹

Motivation

č

CONTRACTOR AND

Rectifying Strips in Differential Geometry

Attaching Rectifying Strips on the Surface

Geodesic strips

Asymptotic strips

Geodesic gridshell

Asymptotic gridshell

Fabrication

Formation

Transportion

Fabrication: Simplification of construction elements, massively produced

Formation: bending originally flat straight strips

Transportion: easily move

Eike Schling, Hui Wang, Sebastian Hoyer, Helmut Pottmann. "Designing asymptotic geodesic hybrid gridshells." Computer-Aided Design 152 (2022): 103378. Eike Schling, Zongshuai Wan, Hui Wang, Pierluigi Dacunto. "Asymptotic Geodesic Hybrid Timber Gridshell." Proceedings of AAG, Stuttgart, Germany (2023): 1-12.

Pseudo-geodesic curves:

The signed angle θ between b and n is constant. [*W. Wunderlich, 1950*]

 $\theta = 90^{\circ}$, geodesic

$$\theta = 0^{\circ}$$
, asymptotic

[Mesnil and Baverel 2023]

Method and Results

*

A CONTRACTOR

10.000 (0.000 (0.000 PM))

Method: A Level-Set Based Framework

Assign function values for the curves

A robust version of [Jiang et al. 2019]'s tracing algorithm.

Optimize the level sets to fit the curves Linear interpolation: $E_{\text{trace}} = \sum_{\mathbf{c}^i \in C_t} \sum_{\mathbf{p} \in \mathbf{c}^i} \left(\frac{F^i - F_0}{F_1 - F_0} - \frac{\|\mathbf{p} - \mathbf{v}_0\|}{\|\mathbf{v}_1 - \mathbf{v}_0\|} \right)^2.$ Fairness: $E_{\text{fair}} = \sum_{\mathbf{v} \in \mathcal{U}} \|H(\mathbf{v})\|^2 \mathcal{A}(\mathbf{v}).$ min $E_{\text{init}} = \lambda_0 E_{\text{trace}} + \lambda_1 E_{\text{fair}}$ = 0= 4

Method: A Level-Set Based Framework

An interactive method (optional initialization):

Angle constraints:
$$E_{angle} = \sum_{v \in V} ((b \cdot n)^2 - \cos^2 \theta)^2 \mathcal{A}(v) + \sum_{v \in V} ((b \cdot n)(b \cdot u) - \sin \theta \cos \theta)^2 \mathcal{A}(v),$$

Preventing vanishing gradients: $E_{grad} = \sum_{f \in \mathcal{F}} (||\nabla F(f)|| - r)^2 \mathcal{A}(f),$
Fairness: $E_{fair} = \sum_{v \in V} ||H(v)||^2 \mathcal{A}(v).$
min $E_{pg} = \lambda_{fair} E_{fair} + \lambda_{grad} E_{grad} + \lambda_{angle} E_{angle}.$

Input surface + target angle θ

Pseudo-geodesics of angle θ

Optimizing 1-family of Pseudo-geodesics

Applications: Shading Systems

Vienna, Aug 1st

Applications: Shading Systems

Sunlight through in the morning, and sunlight blocked in the afternoon.

London, Aug 15th

Outside view

Inside view

Optimizing 2-family of Pseudo-geodesics

 $\theta_1 = \theta_2 = 60^\circ$

Applications: Gridshell Structures

$$\theta_1 = \theta_2 = 50^{\circ}$$

Physical model

Optimizing 3-family of Pseudo-geodesics

Applications: Gridshell Structures

AsymptoticGeodesicGeodesic-web

PPG-web $\theta_1 = 30^\circ, \theta_2 = 45^\circ$

Physical model: PPG-web $\theta_1 = \theta_2 = 60^\circ$

Contribution and Conclusion

- Computational design of shapes from rectifying strips (straight flat strips)
- Controllable inclinations of rectifying strips along level-set curves
- Various rectifying strip patterns applied in shading system and gridshell structures

Github Code

Project Page

